
AD-AO66 334 ISM FEDERAL SYSTEMS DIV GAITHERSBURG ME) F/S 9/2
ANALYSIS OF DISCRETE SOFTWARE RELIABILITY MODELS(U)
APR 80 W D BROOKS. R W MOTLEY F30602-78-C-0346

LUCLASSIFIED RADC-TR-80-84 NL2 fllfllfllflfflfflf
IlEllEElllllEE
lflflflflflflflflflfll
lllllllllllhl
EIIIIIIIIIIIIl
IIIIIIIIIIIIIIlfflfflf

1111111118

11;1l11 k I , NI I -l,

~loom

ANALYSIS OF DISCTE SOTAR
IELIASIUTY MODELS

D. . Brooks C ~~

~~RVWDFO PW C RELASE DSTRIUIIN UNUMITED

00

R OME AIR DEVEOPMENT CENTER
__ Air Forc Sysftms Command

-JGriffis Air Forme Sea., Nw York 13441

80 7703

~ -~ ~-- ~ AEC.,

*7 T

it ill, be- Ire~suble t* tbo'Oneal ip4U1

RARCWT4041 h beens revAipl " 4 "449

AM1 N. SWIRT 1-
Project J1081eer

APPROVM: 4
W5UDALL C. BAQWA, Colonel, USA
Chief:, Information Sciences Division

FOR TIM, COIBAD. 4

MAing Chief, ?laus''Otfico

If Yomr address hes changed or if you wish to be tovmed from thie PAbc
msilift list, or if the addressee is no logre1y4b yu -siaia
Pies.. notify RAVC (1#I8).* Griffis*sA hIg JY 3441. This Vill asILtu i

uaatlnupa urrent *a iling list.

Do not return this COPY. Uflt or destroy.

_______ __ -3f

UNCLASSIFIED

IREPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM

____ __ .P RGANZATIN NAE AN ADDRES .C PR MEENT. RETTA SK E

I4LS. SPLMETR NOETE S FWR.UIBLT c -Sp7

Rlj .AC Trc Eniner AlanAC N. SGkert (ISIS)(&

lso s for m valdeatin Sythemrls iindiae tAt th Odel provideBER

reasonablerfits toite hitrclerrdt is= reomene that

IDI. COTOLN 1473 C AEDTO OANOV ADDRISOS LTEU C SIF D

SECURITY CLASA I07TIS E (e ot n

. DELS.FCTON ONRDN

UNCLASSIFIED

asCUfeTy CLASSIFICATION OF THIS PAG1Ute Da MaewM

properly collected according to the model data requirements and assump-
tions.

NTIS

UNCLASSIFIED
SECURITY CLASSIFICATIOS5 Of T--- PAGfrWheA Data Ent -0E

~I'kj

CONTENTS

Section Page

1 INTRODUCTION 1-1
1.1 Background and Purpose 1-2
1.2 Major Results and Conclusions Concerning

Model Validity 1-3

2 THEORETICAL FOUNDATIONS AND MODEL DEVELOPMENT 2-1
2.1 Introduction and Overview 2-1
2.2 Problem Statement 2-3
2.3 Mathematical Formulation 2-7
2.3.1 Expected Value for the Binomial

Distribution by Module 2-9
2.3.2 Eapected Value for the Binomial

Distribution for the System 2-12
2.3.3 Expected Value for the Poisson

Distribution by Module 2-14
2.3.4 Expected Value for the Poisson

Distribution for the System 2-15
2.4 Parameter Estimation 2-16
2.4.1 Binomial Maximum Likelihood 2-16
2.4.2 Poisson Maximum Likelihood 2-19
2.4.3 Least Squares 2-21
2.5 Solution Procedures 2-23
2.6 Correctness Verification 2-25
2.7 Initial Value and Convergence Considerations 2-26

3 MODEL ANALYSIS REQUIREMENTS AND RESULTS 3-1
3.1 Introduction 3-1
3.2 Model Validation 3-3
3.2.1 Historical Error Data Analyzed 3-3
3.2.2 Data Assumptions 3-7
3.2.3 Results 3-9
3.2.4 Discussion of Results 3-22
3.2.5 Conclusions Based on Analysis of

Historical Data 3-25
3.2.6 Model Validation by Means of Simulation 3-27
3.3 Optimum Time Interval for Data Aggregation 3-35
3.4 Time to a Specified Number of Remaining Errors 3-37
3.4.1 Formulation 3-37
3.4.2 Example 3-41
3.4.3 Combining Detection and Correction Times 3-43

iii

Section Page

3.5 Model Formulation with Variable
Detection Probability 3-48

3.6 Narrowing the Range Estimates of
Model Parameters 3-51

3.7 Variance and Confidence Limits for
Model Parameters 3-54

3.8 Comparison of Discrete Models with
Weibull Distribution 3-56

4 MODEL IMPLEMENTATION 4-1
4.1 Introduction 4-1
4.2 Capabilities 4-1
4.2.1 Model Versions 4-3
4.2.2 Module Level Models 4-4
4.2.3 System Level Models 4-6
4.3 Model Program Documentation 4-7

5 DATA REQUIREMENTS FOR SOFTWARE
RELIABILITY ANALYSIS 5-1

5.1 Requirements 5-1
5.1.1 Test Occasion Date or ID 5-1
5.1.2 Software Errors 5-3
5.1.3 Test Effort 5-6
5.1.4 Weighing Factor 5-7
5.2 Data Assumption 5-7

6 SOFTWARE RELIABILITY REQUIREMENTS
SPECIFICATION AND MEASUREMENT 6-1

6.1 Introduction 6-1
6.2 Definition of Reliability 6-2
6.3 Stating Reliability Requirements 6-4
6.4 Measurement of Performance 6-5
6.4.1 Numerical Example 6-6
6.4.2 Confidence Level Considerations 6-8

7 APPLYING THE MODEL TO SOFTWARE
DEVELOPMENT PROJECTS 7-1

7.1 Predictions of Future Errors 7-2
7.2 Current and Future Reliability Estimates 7-5
7.3 Example Model Application to Trade-offs 7-10

8 DEFINITION OF TERMS 8-1

9 REFERENCES 9-1

iv

TABLES

Table Page

3.2.1-1 Summary of Projects and Errors Analyzed 3-4

3.2.2-1 Data for Project 1 3-10

3.2.2-2 Data for Project 2 3-11

3.2.2-3 Data for Project 3 3-12

3.2.2-4 Data for Projects 4 through 7 3-13

3.2.3-1 Parameter Estimates and Statistics for Project 1 3-14

3.2.3-2 Parameter Estimates and Statistics for Project 2 3-15

3.2.3-3 Parameter Estimates and Statistics for Project 3 3-16

3.2.3-4 Parameter Estimates and Statistics for Project 3,
a = .935 3-17

3.2.3-5 Parameter Estimates and Statistics for Projects 4
through 7 3-18

3.4-1 Times to Reduce Remaining Errors to a Specified
Number 3-45

5.1-1 Historical Data Required for Input to Model 5-2

FIGURES

Figure

2.2-1 Error History Characteristics in the Real World
of Software Development 2-5

3.2.6.2-1 Simulation Approach 3-30

V

FIGURES

Figure Page

3.2.6.3-1 Simulation Results for Test Condition 2 3-33

3.4-1 Representation of the Error Detection
and Correction Process 3-38

5.1.2-1 Relationship Between Problem Reports, Software
Changes, and Software Errors 5-4

8-1 Software System Hierarchy 8-3

vi

F5

EVALUATION

The increased reliance on embedded caputers for new weapons systes
in such areas as command and control and avionics has led to a
resultant increased importance in embedded computer software for these
systems. The increasing expendCitures on computer software have, as a
consequence, led to a desire to proeuce high quality ebe~ded cor.puter
software for low softWare life-cycle costs. This Oesire has been
expressed in numerous industry an6 Government sponsore - conferences,
as well as in documents such as the final reports of the the Joint
CaTander's Software Reliability Vorking Groul. (Nov 1975) and the
Joint Logistics Cown, anders Joint Policy Coordinating Crourp on Concputer
Resource 1':anagerrent (Apr 1979). Eased upon the reco.menations in
these documents, numerous efforts have been initiated to develop
rathemratical technicucs for predicting the reliability and error
content of a software system for use in r.anagerent tracking and
software qualification testing. owever, early effcrts have not
produced nodels with the desired predictive accuracy for general rmx el
usage.

This effort was initiated in response to this nee& for developing
better and more accurate software error prediction models and fits
into the goals of RAC TPC Co. 4G, Inforruation Processing (formerly

RADC TPO Vo. 5, Software Cost Peduction), in the sufthrust of Software
Engineering (etrics and rodeling). This report surmarizes the
development of irathematical Trodels baseC upon the assumption of
binomial and Poisson distributions for the tires to detect and correct
software errors. The ikportance of this development is that it
represents an attempt to include both error generation and
non-constant error detection rates into model assuptions, ane thus
more closely reflects the actual software error detection and
correction process.

The theory and equations developed undler this effort will lea to
needed mathematical techniques for -use by software tanagers in more
acurately tracking a software eevelorment in terms of reachino
prescribed reliability and error content goals. In aedition, the more
realistic model assumptions will lead to better model predictability,
thus insuring more widespread usage of software relia-ility modeling
techniques. Finally, the predictive techniques developed under this
effort will be applicable to current Air Force software development
projects and thus help to produce the high quality, low cost software
needed for today's systems.

ALA" N. CUKEM
Project Engineer

THIS AGZ Is MST QALITY PIe'IE?WA oe~ytFIISIM TO DI)

Vii

SECTION 1

INTRODUCTION

This document is the final technical report for RADC Contract Number

F30602-78-C-03"6, concerned with the Analysis of Discrete Software Reli-

ability Models. The report is organized topically into nine interrelated

sections. A description of the major topics discussed in each section is

as follows:

* The remainder of Section 1 presents the purpose of this

study and the major results and conclusions.

e Section 2 presents a detailed discussion of the theoretical

foundations and mathematical formulation of our discrete

reliability models.

* Section 3 presents the results of analysis of these models

according to the requirements of our contract with RADC

during the period from October 1978 through September 1979.

Validation results are presented using historical data

provided by RADC from seven development projects. Model

'validation results using simulated data are also presented.

An important topic also presented in this section is the

approach used to estimate the time required to a specified

number of remaining errors.

Section 4 briefly elaborates on the APL implementation of

these models, particularly when using error data collected

at the module or system level.

1-1

" Section 5 identifies the data collection requirements for

software reliability analysis using the models. A discus-

sion of the rationale and assumptions made about each data

item is presented.

" Section 6 contains a discussion of our definition of software

reliability and how reliability requirements should be

specified and measured.

* Section 7 contains the additional equations needed by manage-

ment to predict future error occurences and other statistics

related to current status and future reliability predictions.

An example of how the models can be applied to trade-off

studies during system testing is also provided.

9 Sections 8 and 9, respectively, present a definition of

important terms (e.g., software error) and technical

references used throughout this report.

1.1 BACKGROUND AND PURPOSE

Since 1976 at IBM/FSD in Gaithersburg, Maryland, research activities have

been underway to provide models, tools, and procedures for assessing the

reliability of a software system at different stages in its development.

During this time major attention has been given to the development of

discrete software reliability models and their validation using data

collected from ongoing projects.

The models as formulated have shown strong indications of their validity

when applied to internal projects. Additional mathematical analysis of

the models was needed, nevertheless, along with continued validation

studies using data from other large-scale projects, to further evaluate

1-2

I i,

the generalized applicability of the models. The purpose of this contract

effort was to perform the required analysis and validation of the models

as needed. Section 3 of this report presents what these various analysis

requirements were, and the results obtained during validation of the

models using historical data provided by RADC and simulated error data

developed by IBM.

1.2 MAJOR RESULTS AND CONCLUSIONS CONCERNING MODEL VALIDITY

In general the models showed strong indications of their validity when

applied both to historical error data, and to simulated error data which

was used to more closely examine the effects of random error on the

accuracy of the model estimates.

Using historical error data from seven projects, the models showed reason-

able fits to the observed software errors and software problem reports.

Acceptable estimates of total software errors (N) were obtained in all

cases. In those instances where poor fits of the model were obtained the

results were viewed as providing an indication of:

* The sensitivity of the models to the assumptions made about

the data; and

* The lack of thoroughness of testing 3f the systems being

analyzed.

The results presented in this report point to the need for future data

collection efforts to collect error history and test data that meet as

closely as possible the model data requirements and assumptions. We

consider that the models show a great deal of promise to apply to future

software development projects, especially when appropriate data are

collected.

1-3

...... i -

The use of simulated error data for purposes of model validation is

viewed as a feasible alternative to the use of historical data, until

data are collected that more closely agree with the model data require-

ments and assumptions.

1-4

.4

SECTION 2

THEORETICAL FOUNDATIONS AND MODEL DEVELOPMENT

2.1 INTRODUCTION AND OVERVIEW

This section discusses the theoretical foundations of the model and

presents a thorough discussion of issues related to the mathematical

development of the model, methods of parameter estimation, and solution

procedure. Prior to this discussion, however, a general overview of the

characteristics and capabilities of the model is presented in the context

of the work and progress made by IBM/FSD in software reliability research

over the last three years.

Since 1976 at IBM/FSD in Gaithersburg, Maryland, important research

activities have been underway to provide models, tools, and procedures

for predicting the reliability of a software system (see Brooks and

Weiler [3] and [41; Brooks, Kocher, Motley, and Weiler [5]; Motley [131;

and Motley and Brooks [151). These efforts have been undertaken in

recognition of the fact that users of data processing systems, particularly

the military, are becoming increasingly concerned with the problems of

measuring and predicting the reliability and life cycle costs (which

includes continued error detection and correction after delivery) of such

systems. Moreover, it was recognized that no tools existed that ade-

quately addressed reliability measurement and prediction in a realistic

software development and test environment.

To date, FSD's efforts have resulted in the development of a software

reliability model that can be applied at various stages in the development

cycle to determine the number of errors remaining, the reliability of the

software, and the amount of future test time required to reduce the

remaining errors to a specified level.

2-1

7-M.7

Research emphasis has been on an incremental approach to model development

and refinement. As a result of using data from ongoing software development

projects within IBM and data on other large-scale projects supplied to

us under contract to the Government, the validity of the model has been

examined in a realistic environment. In addition to providing us with

validation information, this experience has allowed us to generalize the

modelto better reflect the realities of software development and testing.

At present, the model takes into account the following realities inherent

in the software development and test process:

* The amount of source code under test may vary from one

test occasion to the next.

* Each of the software modules of a given system may

come in and out of test on various occasions, and are

not necessarily under test on all occasions.

• Each module may contribute to the total errors in the

system according to its size relative to the total

size of the system on any given test occasion (size

here could refer to soutce lines of code, object words

of core required, etc.).

o The amount of time spent in testing the system (or a

subsystem, module, etc.) may vary from one test occasion

to the next.

* Errors may be reinserted in the software during the

error removal and correction process; also, the correc-

tion of errors exposes additional errors to discovery.

2-2

it

The following represent model outputs which can be used to support manage-

ment and customer reliability information needs during project development

and after delivery:

* The probability that no more than a specified number

of software errors of a specified type or classifica-

tion will occur during some future interval of testing.

* The number of remaining errors (by type, if desired)

in a software system prior to delivery, and the amount

of future test time required to reduce the errors to a

specified level.

e The amount of test time required to get the software

system's reliability up to a specified level prior to

critical test points (e.g., customer demonstration/

acceptance, selloff, delivery) in the development

cycle.

Furthermore, the model may be used in trade-off studies that give manage-

ment clear indications of how much additional test effort should be

expended on which system modules to maximize their payoff (e.g., as

measured by incentive award dollars/fee given by the customer agency) in

meeting the system's reliability requirements test.

2.2 PROBLEM STATEMENT

The reliability of any software system, however measured, is an indication

of the extent to which the software is suitable or fit to be relied on

during actual performance and operation. The extent to which it can be

relied on is intimately related to how free from error the system is at

present or will be during some future specified period of performance.

2-3

The analysis of software errors encountered during previous periods of

performance, then, becomes an important activity that would contribute to

the measurement and prediction of the software reliability in the future.

For the purposes of this research, the reliability of a software system

(subsystem or module) is defined as:

e The probability that no (or no more than a specified

number of) software errors of a given type will occur

during a specified future time interval under specified

testing conditions.

More will be said about this definition in Section 6.0.

Since software reliability is so closely tied to the error-freeness of

the system, the analysis of historical errors should necessarily lead to

an ability to estimate the finite number of errors that were in the

system to begin with, how many are remaining at any given time, and the

rate at which errors are being detected and removed. A software relia-

bility model is needed, then, that can estimate these values with increasing

precision as the system is developed and tested.

When developing the model to derive these estimates, important factors

which influence error occurrences in the real world of software development

and testing need to be considered. For example, based on experience in

analyzing error data from numerous software development projects, it has

been observed that the error histories of these projects generally go

through an initial build-up, peaking, and then decaying process similar

to that depicted by the hypothetical curve shown in Figure 2.2-1. Admit-

tedly, many factors can be identified which may be contributing to or

influence this variability typically observed in project error data.

Some of the more important factors assumed to be systematically influencing

2-4

Figure 2.2-1. ERROR HISTORY CHARACTERISTICE IN THE REAL WORLD OF SOFTWARE
DEVELOPMENT

1~

Time

2-5

the number of errors detected and corrected on each occasion are the

following:

a The system is being developed and tested incrementally -

this means that some portions or modules of the system

may be available for testing, or in and out of test,

while others are not. This could result from the need

for different testing scenarios, phased development

and test requirements, or other factors (e.g., lack of

personnel for testing).

.9 During periods of testing, the system or any portion

thereof is usually not tested an equal amount from one

test occasion to the next.

Software errors are often reinserted in the programuing

system in the process of correcting errors already

discovered.

* The correction of errors in the system exposes addi-

tional errors to detection during future periods of

testing.

Given all of this, the problem becomes one of developing a software

reliability prediction model which meaningfully relates each of these

factors to the occurrence of software errors in the system with the

objective of estimating:

" The total number of software errors in the system (N);

* The probability of detecting any one error during a

specified unit of testing (q or *); and

2-6

e The probability of correcting errors in the system

without reinserting additional errors and exposing

others to discovery (a).

Once estimates* of the model parameters N, q (or #), and a are obtained,

other important estimates can be derived. These include:

" Errors remaining

" Future errors expected

" Current and future software reliability

" Time required to achieve a specified reliability; and

" Probability of passing a reliability requirements'

test.

2.3 MATHEMATICAL FORMULATION

The model development approach taken by the FSD researchers has been to

consider the process of error detection in software testing as a discrete

process and to derive mathematical models to represent this process.

Work performed by others in the application of the continuous exponential

distribution has been very useful, but leaves much to be desired in terms

of precise statement of assumptions, procedures to follow for collection

of error data according to the theory postulated by the models, and

meaningful conclusions to draw as a result of the analysis made using

these models. A key problem results from simply attempting to apply

hardware reliability concepts to that of software, leading to, for example,

expressions such as "mean-time-to-failure" and "failure rate" for software

systems. Manyof these concepts become vague, lacking operational meaning

and value, when applied to software.

*Throughout this report no notational distinctions are made between model
parameters and their estimates. References to each are readily distinguished
by the context in which they are discussed.

2-7

1M .

Two mathematical models, the binomial and Poisson, have been employed in

our model development activity. Each model assumes that:

* The number of software errors detected on each test

occasion is proportional to the number of errors at

risk for detection; where the number at risk is some

portion of the errors remaining.

* The proportionality factor, or probability (q for the

binomial, * for the Poisson) of detecting any one
error during a specified unit interval of testing, is

constant over all occasions and independent of other

error detections.

* The errors reinserted on any occasion are proportional

to the number of errors detected.

From the standpoint of parsimony of assumptions, the binomial distribution

should be superior to the Poisson. The Poisson is derived from the

binomial using the assumption that the population of events (e.g., software

errors) is very large and the probability of error detection is very

small.*

Each of these models has two variations. The first variation gives the

expected errors in each module of a system under test. The second variation

gives the expected errors for the entire portion of the system which is

under test. The operational usefulness of these two variations is discussed

in Section 4. Their mathematical formulations are presented in the

following sections.

*Specifically, the assumption is that e = 1-q.

2-8

2.3.1 Expected Value for the Binomial Distribution by Module

The expected value for the number of errors detected in module j in the

first unit interval of the first test occasion* is given by:

n -j w.Nq

where:

n is the expected number of errors;lj

w. is the weight assigned to module j;
3

N is the total number of errors in the system at the beginning

of the first test occasion; and

q is the error detection probability, i.e., the probability

that any one error will be detected during one unit interval

of testing.

For the purpose of our models, the contribution of any module to the

number of errors detected on each occasion is considered a function of

its size relative to the size of the total system, assuming the module is

tested on that occasion. The rationale for this consideration is taken

from earlier studies (see Motley and Brooks [141; Thayer et al. [191)

which strongly indicate that the number of errors in a program is signifi-

cantly related to the length of the program.

Size here can be measured in terms of source lines of code, object program

size (e.g., words of core required to store the object code) or some

other relative measure of size. The weight factor, w., is the ratio of

the size of the module to that of the total size of the system; i.e.,

that percentage or portion of the total system size attributable to the

jth module.

*See Section 8, Definition of Terms

2-9

The term w.N represents the number of errors exposed to detection; or inJ
classical terms the effective number at risk for module j.

If all modules are tested on the first occasion Ewj = 1, and all errors

are at risk. In the successive unit intervals of the first test occasion

we have for module j:

Unit Number Expected
Interval at Risk Errors

I w .N w .Nq3 3

2 w .N(1-q) w2Nq(1-q)

3 w N(I-q)2 w .Nq(1-q)2
.1 J

t w.N(1-q)tlj " w.Nq(1-q)tlj
-Itlj 3 3

The total number of errors expected in module j during the first test

occasion is:

tlj

- i-l

= w.N 1 - (l-q) 1

- w Nq.

where tli is the amount of test effort which is expended on module j

during the first test occasion. In general:

qij = [1 - (l-q)tiJ] (2.1)

2-10

.t.

is equal to the effective error detection probability for the ith test

occasion for module j.

The number of errors at risk in module j for the second test occasion is:

w.N-n1 .+rn1 ., or

w N-anlj

where:

n j is the number of software errors actually detected in

module j during the first test occasion;

r is the error reinsertion/uncovery rate which represents

two separate effects observed during software development

and test. The first effect considers the chance that new

errors may have been reinserted in the software during

the process of correcting errors already detected. The

second effect considers the chance that the correction of

errors opens new paths through the software containing

errors that were previously not accessible to testing.

Both of these effects are assumed to be proportional to

the number of errors corrected and are combined into a

single factor, r; and

a = l-r; which is interpreted as the probability of

correcting errors in the system without reinserting

additional errors and exposing others to discovery.

Alpha (a) can be estimated by the model or specified as a

constant value (O<a<l) when estimating only N and q (or *).

2-11

The effective error detection probability q2j for the second occasion is

derived as for the first occasion; thus, the expected number of errors

for module j during the second occasion is:

n (wjN-anlj) q2 j

For the third occasion it is:

-n' = (wjN-anlj-an 2 j)q 3 j

For occasion i:

n'j = (w N-aN ~)qi

= Nijqi j (2.2)

i-i

where N = is the cumulative number of errors observed for
i1,j mj

m=1
module j through occasion i-l; and

N.. w.N-aN. (2.3)
3 3 i -1,j

is the estimate of the number of errors at risk, or remaining in module

j.

2.3.2 Expected Value for the Binomial Distribution for the System

The expected number of errors in the portion of the total system which is

under test on occasion i can be found by taking the summation of

2-12

__ _ _

(2.3) over all modules which are being tested. The effective number at

risk for the system is:

= -(w.N aN)1 jcj.J a~ i-1,j

= N E w. a Ni. 1 j (2.4)
jcJ. J jeJ.1 1

where:

J. is the set of modules tested on occasion i;1

jJ. idenotes that the summation takes place over all modules that

are elements of the set J..

E w is the fraction of the system which is under test; and

j cJ.
1

E Ni- 1 ,j is the number of errors detected in that portion of

jeJ. the system prior to the ith occasion.: 1

It is evident from this formulation that the modules are no longer distinct

but are now being considered as a portion of the system. Therefore, it

is appropriate to assume that all of the modules being tested during an

occasion are under test for the entire occasion. It follows that the

test effort for the system may be used in place of the modular test

effort. This substitution yields an effective q for a testing occasion

of:

= 1-(1-q)ti (2.5)

where t. is the system test effort on occasion i.

2-13

The expected number of errors in the system on occasion i is:

n' = Niq (2.6)
.i i

2.3.3 Expected Value for the Poisson'Distribution by Module

This distribution is considered by some investigators to be the best one

to use for rare events. Also, the Poisson should provide a good approxima-

tion to the binomial distribution when N is large and q is small. For

the Poisson model the error detection rate is assumed to be proportional

to the number of errors remaining in each module.

As before, the expected number of errors in module j at the beginning of

test occasion i is N... Therefore, the expected error detection rate forii

the first unit interval (of length t) is Nij , where * is the propor-

tionality factor between errors remaining and error rate. The expected

number of errors is given by the product of error rate and unit interval

length; i.e.,

33 Nj

With these definitions in mind the following table is constructed:

Unit Errors Expected Expected
Interval iv Module Error Rate Errors

1 N. .j Nij4 t

2 N ij (1-4t0 N 3.j (1-4t)4 N ij (l-4t)4t

t ij Nij (l't)tij"I - i-tij-lI Nij (1-0 tij' -t

2-14

where:

t.. is the number of unit intervals module j was tested
1j

on occasion i, and

t is the length of the unit interval (e.g., 1 hour,

1 week, 1 month of testing)

The expected number of errors for module j on occasion i is:

t..
1J -I

13=1M=l

With no loss in generality t may be set equal to unity and then

n:. N (2.7)j Nij ij

where:

*ij 1 - (1-0)tij

The expected error rate for module j on occasion i is:

Aij nj/t

= N. .0 /ti. (2.8)

The equivalence between the above Poisson model and the exponential

models of Shooman (17] and Jelinski-Moranda [121 was shown in Brooks and

Weiler (31 and [4]).

2.3.4 Expected Value for the Poisson Distribution for the System

The expected number of errors in the system based on error detection rate

is derived using the approach of Section 2.3.2. For occasion i it is

given by:

n'= N i i

2-15

where:

t.

*i

The expected error rate on occasion i is:

= n/t

= Ni$i/ti (2.9)

2.4 PARAMETER ESTIMATION

Maximum likelihood and least squares methods were used to estimate the

parameters for each of the models discussed thus far. Theoretically,

each method of estimation when applied should yield reasonably equivalent

results. However, in some cases, one method or the other may provide a

closer fit to the observed data and more reasonable estimates of N,

q (or #), and a. When this occurs, the parameters derived from the model

and method of estimation providing the closest fit to the observed data

should be used. In general, the maximum likelihood approach gives biased

estimates, whereas the least squares approach yields unbiased estimates

*which minimize the variance between observed and expected values.

2.4.1 Binomial Maximum Likelihood

By using the binomial distribution and replacing the event probability

and number at risk with the effective values as determined in (2.1) and

(2.3), the probability of a specified number of errors occurring in

module j during test occasion i, xi., is:

Nij x.. N..-x.

P(Xij) XiJ ij j(1qij) Ij i3

2-16j ______

By replacing xij with the actual number of errors observed, nip the

likelihood function for a series of observations of j modules an k occa-

sions may be written as:

L p(n 1 1 ,n12 ,...,nkj)

k J ij na ijlqj)ij j (2.10)

i=l j=l (nj

where:

k is the number of test occasions and

J is the number of modules in the system.

If the factorials* are replaced with Stirling's formula and the natural

logarithm of (2.10) is taken, then the partial derivatives with respect

to the unknown parameters N, q and a may be obtained. When the results

are set equal to zero, simultaneous equations are obtained whose solution

yields the maximum likelihood estimates of the parameters N, q, and a.

Noting that terms of the form:

c c (2.11)

2Nij 2(N ij-nij)

(where c is a constant) will be small enough to be neglected in most

cases, the partial derivatives when set equal to zero are:

k J r -

89n L 0 = k j[w'£n 'Ij + wjti An(1.)] (2.12)
aNi=l j=l N ij-n ij

*The term Ni3) is equivalently written in factorial notation as:

N..! /n. .1 (N.. - n.l
• j /nj (Wij ij)I.

2-17

81n L 0 r____ - j t.N. (2.13)
i=1 j=l+.(qti

Oln L a 0 i- n Nij + N . t ln(1-q (2.14)

i= j=1 N. i-ni

Equations (2.12), (2.13), and (2.14) represent simultaneous

equations that must be solved to find the maximum likelihood estimates

of N, q, and a for the binomial module level model.

It is not unusual that some module j would not be tested at all on some

test occasion i. In that case the respective values for t.. and n..

should be set to zero. Application of l'Hopital's rule shows that the

first term in (2.13) is indeterminate under these conditions. It should

then also be set equal to zero.

Inspection of (2.12) and (2.14) reveals that the denominator in the first

logarithmic term is the effective number of errors at risk minus the

observed number of errors. For some sets of observations where the data

is erratic, the introduction of weighting factors for individual modules

causes the effective errors at risk to be less than the observed errors,

especially if the weight estimate is too small. The argument of the

logarithm then becomes negative which precludes convergence. This anomaly

may be avoided by selecting the system level variation of the model as

given by (2.6).

For the binomial system level model, the likelihood function now becomes:

L = p(nl, n2, n3,... ,nk)

k (=igl qii ('i) i n

2-18

- - ---------

where:
J

n. nni. E nij

j=1

Proceeding as before the partial derivatives when set equal to 0 aret

k1
BnL= An t =n(-q)

8qn- ii [1-(1-. =

Un L n 1

8n L - k N + t.ln(q]E Ni1,j 0

S Ni-n i ij'

2.4.2 Poisson Maximum Likelihood

For the Poisson distribution at the module level, the density function

for number of errors nij with parameter pij is:

n.
f () = P1'.3 e ii,

: n...!

Setting i. = Xit and using the expression for error rate X.i as given

by (2.8), we get:

n -

f(ni,ijij) (N ij.i) i j eN ijij

n.j
13

2-19

The likelihood function is:

k i -..

L=7! i i . .i ie ii
i=l J=l n..

Proceeding in the same manner as in the binomial case the natural loga-

rithm of the likelihood is taken and the partial derivatives with respect

to N, a and (in this case) * are developed and set equal to zero:

8aIn L 0 w kJ t 1(-)t3 [

i1I j=1

OAtn L S0 N 1-#4a. n -

i-lI)tj *ii
i1I j=1

At the system level the Poisson distribution is:

f(n.,x t) (A (Xt i e i 2.

i i

Using the expression for A. as given by (2.9), the likelihood function

is:

k _ n. .O

L n (N e) 'e

n.1

2-20

After taking the logarithm of the likelihood, the partial derivatives of

N, * and a are developed and equated to zero, which yields:

k
82n L a 0 = __)

k
8n L 0 = t.(1-*)ti ____ ._

k
amn L 0= (N 1 (n.

i=l-

2.4.3 Least Squares

Two least squares approaches were applied to the parameter estimation

problem. In the first approach (module level), the individual differences

between the observed and predicted errors for each module on each test

occasion were used.

In the second approach (system level), the errors are summed before

comparison so that all of the errors which are estimated for a testJoccasion are compared with the total observed errors for that occasion.
The least squares approach using the expected value equations for the

binomial or Poisson distribution yields formally identical partial deriva-

tives with respect to N, q (or 4), and a. When these are solved, identical

estimates of the parameters are obtained, regardless of whether the expected

value equation for the binomial or Poisson is used. For this reason the

least square model version is only distinguished with respect to the

level (i.e., module or system) at which it is applied. The model equations

in the following two sections are derived using the expected value equations

for the binomial distribution.

2-21

2.4.3.1 Least Squares by Module

The expected value of the number of errors detected in module j during

test occasion i is given by (2.2). The actual number of observed errors

is n.j. The parameter estimates N, q and a are to be determined such

that the sum of the squared differences between the observed values and

the expected values is minimized. The squared residual function is given

by:

k Jr. E (ij- ij 2
i=1 j=1

k Jk (n ij -Nij q j)
i=1 j=l

The partial derivatives of R with respect to the parameters N, q and a,

when set equal to zero, are:

k ~ F
OR = 0 = nii-Nijqij)wjqi
O i=1 j=l

k I
8R a 0 = n

OU i=l j=l

2.4.3.2 Least Squares at the System Level

The expected value for the number of errors detected in the system during

test occasion i is given by (2.6). The observed number of errors is ni.

2-22

The squared residual function is given by:

R = [n. - iq] 2

The partial derivatives of R with respect to N, q and a, when set equal to

zero, are:

kr
BR [(ng. j q ,

BR -0 1 J Nit qi

BR =

2.5 SOLUTION PROCEDURES

Each of the parameter estimation techniques in the previous section

resulted in three simultaneous non-linear equations involving the three

unknowns N, a and q (@ for the Poisson case). These equations were

solved by using the Newton-Raphson method (see Hildebrand [101 and Dodes [61)

generalized for the treatment of three equations. In a more compact

notation the equations may be written:

F(N,q,a) = 0

G(N,q,a) = 0

H(N,q,a) = 0

42-23

-- t

where the functions F, G, and H represent the partial derivatives of the

estimating function with respect to N, q (or *), and a, respectively.

In preparation for an iterative technique, the following linear simultaneous

equations are required:

ANF N + AqFq + AaF = -F(Ni,qi,a)

ANG N + AqGq + AG a = -G(Ni, qi,ai)

ANHN + AHq + AaHa = -H(N.,qi,ai)

where:
F(Ni'qi'ai d

G(Ni,qi,a)

H(Ni,qi,a.)

denotes that these respective partial derivatives are evaluated for

estimated values of N, q, and a at the ith iteration; (FN, Fq, Fa)

are defined as:

FN = 3F(Ni,qi,a.)
NN

Fq = 8F(N.,q.,au)

Oq

Fa = OF(Ni,q.,a.)
8a

(GN, Gq, Ga) and (HN, H, Ha) are similarly defined as the second-order

partial derivatives of the functions G and H each with respect to (N, q,

and a) evaluated at the point (Ni, qi' a.); and

[AN, Aq, Ai

2-24

are the unknown correction factors that must be solved for at each iteration.

Once obtained, these values are then substituted in the equations:

Ni+i N. + N

qi+i= q, + Aq

ai+i = . + A0

giving us a new estimate of N, q, and a for the next iteration.

This Newton-Raphson procedure has been implemented in APL at IBM in

Gaithersburg, Maryland. In this environment the iterative procedure is

continued until the values of F, G, and H are 10-6 or less. More will be

said about this APL implementation of the models in Section 4.

2.6 CORRECTNESS VERIFICATION

The correctness of the parameter estimation techniques is checked by

developing several sets of exact observations of ni, t. and w. using the

basic assumptions of the model and some selected values of N, q, and a.

These exact observations are then used independently by the solution

procedures to determine estimates for the parameters. If the estimated

parameters agree exactly with the values which were initially selected

then the derivation of the models and parameter estimation techniques are

considered to be correct. It is of interest to note that the neglect of

the terms in (2.11) exactly compensate for the approximation introduced

by Stirling's formula, with the result that the exact agreement as noted

above is obtained. The correctness of the impleaentation of the solution

procedure has also been verified by introducing slight perturbations into

the exact observations as previously developed. If the solution procedures

yield estimates which are close to the selected values then the convergence

procedures are also assumed to be correct.

2-25

A661

Correctness checks were successfully performed on all model equations

that appear in this section.

2.7 INITIAL VALUE AND CONVERGENCE CONSIDERATIONS

The Newton-Raphson approach was found to be quite accurate for the purposes

of our research. However, it requires initial estimates of N, q and a

which must either be close to the actual values or else related to each

other in some manner that is not readily apparent. When using this

procedure some solutions were readily found, while in other problems many

different sets of estimates were tried but no solution was ever found.

Occasionally the procedure would converge to a "local maximum", where the

parameters did not appear to be consistent with the observed data. In

these cases additional estimates were tried until a reasonable set of

solutions was obtained.

Furthermore, in experimental cases where the three parameters were to be

estimated and the test effort data (ti) was constant from one occasion to

the next, convergence to a solution was either not obtained, or convergence

to values that were only close to the known solution occurred. if,

however, only two of the parameters (N and q) were estimated, with a

being held constant at some specified value, then convergence to the

known values of N and q was readily. attained. This behavior essentially

indicates that the three equations resulting from the partial differentia-

tion are not independent when the values for test effort (ti) are equal

over all occasions.

These issues and considerations have directly led us to further examine

the range estimates of the model parameters. The results of that contract

task are discussed in Section 3.6.

2-26

4

SECTION 3

MODEL ANALYSIS REQUIREMENTS AND RESULTS

3.1 INTRODUCTION

This section presents the results of various model analysis tasks that

were performed under contract with RADC during the period from October

1978 thru September 1979. A brief description of the topics discussed

in each subsection is as follows:

Section Description

3.2 Presents a discussion of model validation

results and conclusions based on historical

error data provided by RADC. Results and

conclusions obtained using simulated data

are also provided.

3.3 Discusses the results obtained by simula-

tion to determine an optimum time interval

for aggregation of data.

3.4 Presents a mathematical approach for

estimating the total error detection and

correction time required to reduce the

remaining errors to a specified number.

3.5 Discusses a model formulation which allows

for a variable probability of error detec-

tion.

3-1

-- -.-- ..-.---

Section Description

3.6 Discusses results and recommendations for

narrowing the range estimates of N, q (or

*), and a when the test effort is constant

over all occasions.

3.7 Discusses findings with respect to deter-

mining the variance estimates and confi-

dence limits for the model parameters.

3.8 Discusses the application of the Weibull-

distribution to the analysis of error

history data.

3-2

3.2 MODEL VALIDATION

This section presents and discusses the model validation results obtained

using the binomial, Poisson, and least squares models described in

Section 2. Seven sets of historical error data were supplied by RADC

for this purpose. A brief description of this data follows.

3.2.1 Historical Error Data Analyzed

Table 3.2.1-1 provides a summary of the project characteristics from

which each set of data was taken. Essentially all seven projects were

each individually involved in the development of a large-scale, command

and control software system. Each had used some version of the JOVIAL*

language during development, with the exception of Project 1 which used

CENTRAN* and Assembly Language (ALC). For each project, the error data

had been collected during various stages of formal system test and inte-

gration. For Projects 4 through 7 the data also included errors observed

during the actual customer acceptance test and during the initial period

of system operation.

The error data effectively represents a history of the software problem

reports (SPRs) recorded during formal testing. As discussed earlier in

Section 2, the models have been developed to analyze valid software

errors. For our purposes, a software error is defined as:

e Software error - any one of a number of errors that

can be classified as being caused by or attributed to

the activity of computer programing, and that can be

corrected by a change to the software itself.

Software problem reports according to our definition (see Section 8,

Definition of Terms) represent symptoms of latent software errors in the

*Both JOVIAL and CENTRAN are higher order languages.

3-3

" *Wd
- - -

W ~ r-l .12 ?

o~~ 0

4)*..4) $4(E

4. E0. E- 4c

44,

00~

4)0 0

ata

00

4),
00 t

0.. 414) p.

4iu Ad r 4 m

24)1

PC

00 u 4

0 44 4
4) -i 4) -74

*0 to 4))k
444 .M 4 4 0 01
4) m) 4) t '%1.

4

* 000 CA 3-4

0 M0 JA Ad M0 16 16o4 -04 3 .3 a. 4) vh a) 4) a- .,I
0 CA 0 0 a 4) vi 4) 4) 4) w

a cn

0 63

I'0 4 41 o

0A Q

PC,

a~~~ ~ ~ w .44 - * r- (

AJ0 4)

r-4.
0-0

elo 0 0
r ~ ~ ~ 1 14-4 r4
4 1 4 43

.,4~4 r4 .M 10
4> 4 > 63 631

.0 en 0% 41 4.1 14 0a
wf 0% m0 0 0 1 606w

04.3

410
00 14 u4

u 4.1463

0

0 M

to 416

.4 4J

?A F-4 - 04
.0~~ ;I 3

63 0 64)

14 0 44 A3

3-5

system. Until a problem report can be reliably classified as being

caused by the software its value in actual model applications becomes

questionable. In order to arrive at a more reliable measure of valid

software errors, various error categories were eliminated from the total

number of problem reports recorded against each project's software.

For Projects 1, 2, and 3 the following categories of errors for each

test occasion were eliminated from the analysis:

Problem Report
Error

Classification Description

All data records having blank error codes
EE Operating system errors
LL User requested changes
PP Recurrent errors (i.e., duplicate reports)
QQ Documentation errors
SS Unidentified errors (i.e., errors not able

to be classified)
TT Operator errors
UU Questions
VV Hardware errors
W Design/requirements logic error

The error categories for these three projects had been classified according

to the scheme reported by Thayer et al. [19], thus making the error

elimination process quite straightforward.

The data for Projects 4 through 7 were used in their entirety as reported

in Sukert (181. In his preparation of the data for model analysis, a

similar, although less extensive, elimination of non-software related

problem reports was also accomplished.

In addition to our analyses of the data, several researchers have used

either the same SPR data or some variant of it in the analysis and vali-

dation of other software reliability models. For other analyses of data

3-6

from Projects 1, 2, and 3, see Schafer et al. [16]; for Projects 4 through

7, see reports by Sukert [18] and Goel [9]. Variants of the error counts

for each project's data result for several reasons. The most likely

reason is that different authors are likely to count the number of SPRs

and software errors to be used in the analysis in different ways. What

may appear as a valid SPR or software error for one researcher may be

invalid and not appropriate to be counted by another. In effect each

author has his own definition of what constitutes a valid software error

or problem.

To facilitate comparison of the model results with others using like

sets of data, the SPRs from Projects 1, 2, and 3 have been included in

the analysis. The SPRs are not part of the analysis for the remaining

projects (4 to 7), since that data was taken directly from Sukert's [18]

published report containing the filtered software errors. Another

reason for including SPRs is that the SPR data may be the only available

data to work from. Our experience has indicated that, under certain

test conditions from one occasion to the next, a consistent proportion

of valid software errors will often result for a given number of observed

problem reports. When this is observed, the number of valid software

errors on each occasion may be predictable or proportionately estimated

from an analysis of the SPRs. In other words, a theory which accounts

for one will also account for the other.

Readers interested in a more detailed discussion of the projects from

which the error data has been collected should consult the appropriate

reports referenced in Table 3.2.1-1.

3.2.2 Data Assumptions

Various assumptions had to be made about the data prior to its analysis.

In general, for all projects it was assumed that the entire system was

completely under test (i.e., wi for the system was set to 1.0) over all

3-7

occasions. This assumption was made because no data were available

concerning the actual portions of the system under test. This assumption

is a critical one, particularly in the early stages of testing. The

impact of this assumption is that the errors in the system are underesti-

mated.

A second assumption made for all projects was that no errors were rein-

serted in the software during the process of correcting errors already

detected (i.e., an assumption of a = 1). To assume that a is less than

one using historical data would imply that additional data were available

to aid in establishing the validity of a estimated by the model. No

such data was available or reported. In the case of Project 2, however,

a conservative estimate of the error reinsertion rate was put at 6.5%

(Fries [7, p. 18]), hence an a of 0.935. For this project then, N and

q (or 4) were estimated once for each assumption a = 1.0 and a = .935 in

the analysis for software errors.

A final assumption had to be made about the test effort data for Project 3.

For this project, the test time for each occasion was based on the date

the first SPR was written against the software function tested on that

occasion. According to the assumptions made for calculating the test

effort as reported in Fries [7, pp. 19-20], the resultant measure of

testing was highly questionable because of extremely high variance,

and therefore was not used.

As an alternative, an estimate of system test days was computed according

to the assumption that the system was under test only on those days when

errors were reported against it. Under this assumption, the measure of

testing effort will tend to be underestimated on those occasions when

the system was actually tested but no errors were found. As time goes

on this effect is likely to become more prominent. Underestimating test

effort will lead to overestimating errors (i.e., N), since the time per

error will be too low implying that errors are easier to find than is

really the case.

3-8

The error and test effort data for each of the projects is rep6rted in

Tables 3.2.2-1 through 3.2.2-4.

For comparison purposes, all SPRs and errors were also analyzed assuming

that the test effort was constant over all occasions. This was done to

allow readers to compare the results with other models (which made this

assumption), as well as to compare each of our models under the two

assumptions. If the results are always about the same, the adjustment

for unequal times is unnecessary. If they are significantly different,

then it becomes necessary to collect more exact data on future projects.

3.2.3 Results

Model analysis results for each project are presented in the following

tables as indicated below:

Project Table

1 3.2.3-1
2 3.2.3-2
3 (a=l) 3.2.3-3
3 (a-=.935) 3.2.3-4
4,5,6,7 3.2.3-5

3-9

Table 3.2.2-1. DATA FOR PROJECT 1

-- Error Data ------------ ------ Test Effort Data ----

Software Valid Software (t.)
(a)

Occasion Problem Reports Errors Variable Constant

1974 3 726 411 1215.94 1

4 860 411 931.94 1

5 695 362 849.67 1

6 814 192 960.23 1

7 505 228 759.92 1

8 503 229 854.87 1

9 374 175 1086.87 1

10 390 201 829.34 1

11 356 177 934.01 1

12 234 104 730.08 1

1975 1 277 109 722.93 1

2 203 58 571.25 1

Total: 5937 2657

(a) The number of CPU hours the system was under test on each occasion.

3-10

.....

Table 3.2.2-2. DATA FOR PROJECT 2

---------- Error Data ------------ ------ Test Effort Data -----
Software Valid Software (t.)

Occasion Problem Reports Errors Variable(a) iConstant

1973 1 8 7 7.25 1
2 22 22 3.17 1
3 33 32 7.08 1
4 51 47 7.33 1
5 28 26 7.25 1
6 26 25 12.58 1
7 16 16 19.92 1
8 48 48 52.50 1
9 39 36 47.18 1
10 57 53 95.10 1
11 63 57 55.75 1
12 43 39 59.25 1

1974 1 77 71 43.58 1
2 83 80 44.75 1
3 68 65 42.33 1
4 65 57 75.00 1
5 96 90 62.83 1
6 62 60 73.58 1
7 65 57 42.75 1
8 97 90 40.67 1
9 51 46 96.75 1

10 64 57 88.58 1
11 36 29 56.75 1
12 42 40 79.25 1

1975 1 18 16 73.50 1
2 21 18 65.33 1
3 39 37 67.83 1
4 15 15 116.92 1
5 8 8 88.08 1
6 28 28 78.08 1
7 7 6 37.92 1
8 5 5 41.08 1
9 3 3 54.50 1
10 3 3 63.00 1
11 12 12 39.50 1

Total: 1399 1301

(a) Number of wall clock hours the system was under test on each occasion.

3-11

Table 3.2.2-3. DATA FOR PROJECT 3

---------- Error Data ------------ Test Effort Data -----

Software Valid-Software (t.)

Occasion Problem Reports - Errors Variable(a) Constant

1974 8 62 44 13 1

9 183 135 23 1

10 279 210 25 1

11 199 162 21 1

12 149 97 16 1

1975 1 63 39 25 1

2 96 72 20 1

3 107 83 22 1

4 201 147 23 1

5 181 127 24 1

6 101 77 19 1

7 46 41 13 1

8 5 5 3 1

Total: 1672 1239

(a) An estimate of variable test effort was used here; it was computedraccording to the procedure described in Section 3.2.2.

3-12

Table 3.2.2-4. DATA FOR PROJECTS 4 THROUGH 7
(a)

Valid Software Errors

Occasion Project 4 Project 5 Project 6 Project 7

1 203 238 369 334

2 136 179 298 255

3 183 222 398 359

4 47 73 115 89

5 46 56 83 73

6 71 88 150 133

7 54 78 142 118

8 57 92 172 137

9 80 104 202 178

10 64 85 168 147

11 27 53 89 63

12 42 45 87 84

13 55 59 111 107

14 62 84 253 231

15 11 27 70 54

Total: 1138 1483 2707 2362

(a) Testing effort was assumed constant (t. = 1) over all occasions.
Software errors were counted on a weekly basis for these projects.

3-13

go--- --

Table 3.2.3-1. PARAMETER ESTIMATES AND STATISTICS FOR PROJECT I

N g(or*) r r 2
Variable t.V Software Errors

-4Bincmial 3771 1.17 x 10 .89 .79 112

Poisson 3721 1.20 x 10 -4
.90 .81 112

Least Squares 3902 1.08 x 10-4 .89 .79 117

Constant t.

Binomial 3243 .1329 .95 .90 67

Poisson 3228 .1341 .95 .90 67

Least Squares 3254 .1320 .95 .90 67

Observed Errors: 2657

No. of Occasions: 12

Variable t.
1 Problem Reports

Binomial 9337 9.67 x 10-5 .84 .71 247

Poisson 9180 9.96 x 10-5 .85 .72 246

Least Squares (a)

Constant t.

Binomial 7655 .1171 .94 .88 114

Poisson 7632 .1177 .94 .88 113

Least Squares 7857 .1117 .94 .88 117

No. of SPRs: 5937

No. of Occasions: 12

(a) No convergence obtained.

3-14

..............

Table 3.2.3-2. PARAMETER ESTIMATES AND STATISTICS FOR PROJECT 2

2 2
N g(orp) r r

Variable t.
V b Software Errors

Binomial 1438 1.27 x 10- 3 .57 .32 567

Poisson 1423 1.32 x 10- 3 .57 .32 559
-4

Least Squares 1617 8.32 x 10 .53 .28 761

Constant t.1

Binomial 2500 .0208 .28 .08 530

Poisson 2338 .0229 .28 .08 532

Least Squares 3225 0.148 .28 .08 530

Observed Errors: 1301

No. of Occasions: 35

Problem Reports

Variable t.
1

Binomial 1549 1.26 x 10-3 .57 .33 601

Poisson 1533 1.31 x 10- 3 .57 .33 593

Least Squares 1749 8.22 x 10-4 .54 .29 805

Constant t.1

Binomial 2729 .0203 .27 .07 577

Poisson 2545 .0224 .27 .07 580

Least Squares 3545 .0144 .27 .07 577

No. of SPRs: 1399

No. of Oceasions: 35

3-15

- -*..NAM,

Table 3.2.3-3. PARAMETER ESTIMATES AND STATISTICS FOR PROJECT 3

2 2
N q(or) r r x

Variable t. Software Errors

Binomial 3094 2.07 x 10-3 .75 .56 164

Poisson 2801 2.35 x 10-3 .75 .56 163

Least Squares 2660 2.57 x 10-3 .75 .56 160

Constant t.1

Binomial 2075 .0676 .46 .21 322

Poisson 1900 .0771 .46 .21 323

Least Squares 2156 .0639 .46 .21 323

Observed Errors: 1239

No. of Occasions: 13

Variable t Problem Reports

-3

Binomial 4062 2.15 x 10 .76 .58 213

Poisson 3696 2.42 x 10- 3 .76 .58 213

Least Squares 3708 2.46 x 10- 3 .76 .58 209

Constant t.

Binomial 2768 .0688 .47 .22 430

Poisson 2532 .0787 .47 .22 434

Least Squares 2911 .0639 .47 .22 430

No. of SPRs: 1672

No. of Occasions: 13

3-16

Table 3.2.3-4. PARAMETER ESTIMATES AND STATISTICS FOR PROJECT 3, a=.935

2 2

N g(or 0) r r X
Variable t.V Software Errors

Binomial 2918 2.19 x 10-3 .75 .56 164

Poisson 2620 2.52 x 10- 3 .75 .56 163

Least Squares 2488 2.75 x 10 .75 .56 161

Constant t.1

Binomial 1954 .0715 .46 .21 322

Poisson 1776 .0825 .46 .21 323

Least Squares 2016 .0683 .46 .21 323

Observed Errors: 1239

No. of Occasions: 13

3-17

Table 3.2.3-5. PARAMETER ESTIMATES AND STATISTICS FOR PROJECTS 4 THROUGH 7

N g(or) r r2 2

Project 4

Binomial 1348 .1166 .83 .69 164

Poisson 1324 .1210 .83 .69 165

Least Squares 1241 .1395 .83 .69 186

Project 5

Binomial 1823 .1060 .84 .70 155

Poisson 1798 .1088 .84 .70 155

Least Squares 1693 .1230 .84 .70 170

Project 6

Binomial 3958 .0739 .68 .46 477

Poisson 3793 .0793 .68 .46 480

Least Squares 3486 .0916 .68 .46 504

Project 7

Binomial 3446 .0742 .66 .43 487

Poisson 3278 .0806 .66 .43 491

Least Squares 2989 .0946 .66 .43 520

Project: 4 5 6 7

Observed Errors: 1138 1483 2707 2362

No. of Occasions: 15 15 15 15

3-18

3.2.3.1 Goodness of Fit Considerations

Performing a true validation of any software reliability model that

estimates N, among other parameters, requires further follow-up collection

of error data during the operation and maintenance phases until the

last error is found. Once obtained, the total software errors observed

throughout the life cycle can be readily compared with its estimated

value, N.

When this data is not available, as was the case here, validation of

models must rely heavily upon the goodness of fit of the fitted points

to the observed errors for each occasion.

Two goodness of fit measures, the Chi-square statistic (x 2) and the

product-moment correlation coefficient (r), were computed for all results

presented in Tables 3.2.3-1 to 3.2.3-5. The Chi-square statistic is a

standard measure commonly used for this purpose, and is computed as

follows:

X2 = L h
i=1 n.

where:

n. represents the errors observed on occasion i1

n' represents the errors estimated by the model for occasion i

(i.e., the n' values are the fitted points to the observed errors),1

and

k is the number of occasions in the historical period.

3-19

-w - --------

In the context of its use and interpretation, the Chi-square statistic

indicates whether the fitted points (estimated by the model) deviate

from the observed data by more than random or chance error. By comparing

the observed value of X2 with the critical value (as determined from a
!2

table of the X distribution function) for a given probability level, a

determination can be made whether or not the fitted points differ only

by chance from the observed errors.

The correlation coefficient (r), on the other hand, provides information

about the goodness of fit of the models from a different perspective.

The value of r, which ranges from (O<r<l), indicates how predictable the

observed data are from the fitted points. If the predictability of

historical errors is high (close to 1) rather than low (closer to 0),

future error occurrences may be accurately predicted. When r is high,

more confidence is placed in the validity of the parameter estimates.

The values of r for all results presented in this section were computed

as follows:

r = - (3.1)

where:

2s is the variance of the errors of estimate; i.e., the residual
n

error variance due to the lack of fit of the estimated points n'1
from the observed values n, and

2 is the variance of the observed errors.
n

3-20

Computational formulas for these variances are:

k

2 n.-n. i2
s i=1 (3.2)

k-2

-2
s2 (n n)

= i=1 k-i (3.3)

where:

n is the mean of the observed error data.

The value of r in (3.1) is seen, therefore, to depend on the ratio of

the two variances. For example, when the model provides a poor fit to

the data, the residual error variance is large, the ratio of the variances

approaches 1, and r approaches zero. When a good fit is obtained, the

residual error variance is very small (hence, the ratio tends toward

zero), indicating good agreement between the fitted points and the
2

observed data (i.e., r approaches 1). The value of r is also provided

in all results presented here to serve as a direct measure of the percent

of variation in the observed data that is "explained", or accounted for,

by using the estimated values (n').
1

Throughout this analysis, determining whether or not the model provided

a good fit to the observed data was exclusively based on the values of r

22and r . The goodness of fit of the model, or accuracy of prediction,

was based on the following ranges of r and r :

Goodness of Accuracy of 2
Fit Prediction r r

Good Average 0.71 to 1.00 0.50 to 1.00
to High

Poor Low to 0.00 to 0.70 0.00 to 0.49
Moderate

3-21

"' -- , . --- ' -: :: , -- - -1 ' * ; .

The critical values of x2 and r at the 5 percent level of significance

for each of the projects are as follows:

No. of Degrees of Critical Value Critical Value
Project Occasions Freedom of X of r

1 12 10 18.31 .576
2 35 33 43.77 (df=35) .325 (df=35)
3 13 11 19.68 .553

.4-7 15 13 22.36 .514

3.2.4 Discussion of Results

A summary of the results is presented in this section.

3.2.4.1 Predictability of Software Errors from SPR Data

For Projects 1, 2, and 3 the number of software errors on each occasion

were found to be highly predictable from the number of SPRs. Regression

and correlation statistics were as follows, considering software errors

to be a simple linear function of SPRs:

Project 1 Project 2 Project 3

Intercept 7.24 0.24 -0.76
Slope 0.43 0.92 0.75
r2 0.85 0.99 0.99
r 0.72 0.99 0.99

The high correlation obtained suggests that either software errors or

SPRs could be estimated with reasonable accuracy using a simple ratio of

SPRs to software errors, or vice versa. Since the focus of the models is

based on software errors, no extensive discussion of the results for

SPRs is presented here, with the exception of the following remarks.

3-22

The average number of SPRs written per software error for each project

was 2.37, 1.04, and 1.33, respectively, for Projects 1, 2, and 3.

Regression statistics considering SPRs as a simple linear function of

software errors were as follows:

Project 1 Project 2 Project 3

Intercept 129.41 -0.20 2.81
Slope 1.65 1.08 1.32

Again, given the high correlations obtained between errors and SPRs for

each project, it is not surprising that the average ratio of SPRs to

errors is close to the slopes for each project. When just the ratios

themselves were multiplied by the model estimate of N for software

errors to give an estimate of N for SPRs, close agreement was found, in

all cases, when compared with the model estimate of N for SPRs. Closer

agreement was obtained in some cases using the regression equation to

estimate N for SPRs using the model estimate of N for software errors as

the predictor. Based on these results it was expected that the goodness

of fit of the model to either software errors or SPRs should be very

similar within each project. In general, the goodness of fit of the

models to the software error data was either equivalent or only slightly

better than that obtained using the SPR data.

There is, then, for these projects' data an indication that the assump-

tions used in the model for software errors apply equally well for

symptoms of errors (i.e., SPRs). Therefore, one could analyze either

and generalize to the other. The remainder of ihis validation section

focuses on software errors, but would apply also to software problem

reports.

3-23

MC~.. ~ ~-C. - - .. .

3.2.4.2 Goodness of Fit of Models

In general, the three model versions (binomial, Poisson, and least

squares) provided equivalent fits to the observed errors in all cases.

For Projects 1, 2, and 3, given all the assumptions made about the data,

each of the models provided a mixture of poor to very good fits to the

observed errors, when variable testing was considered. As expected, the

fits were not as good under the assumption of constant testing, except

for Project 1. This result suggests that the data collected for CPU

time for Project I do not really reflect the total effort expended in

error detection. In other words, it might suggest the inappropriateness

of CPU time alone as a measure of effort.

For Projects 4 to 7, the fits were moderate to good with values of r

ranging between a low of r = .66 for Project 7 to a high of r = .84 for

Project 5. Had measures of test effort been available for these projects,

it is expected that improved fits of the model to the data would have

been obtained.

In summary, the models provided reasonable fits to the data. For those

projects having better fits than others, it is considered that the higher

percentage of errors already found may be an important influence. For

projects where poor fits were obtained, it was impossible to determine

to what extent the data, with its attendant assumptions, was the cause.

3.2.4.3 Comparison of Model Estimates of N

In general, some differences of practical significance did result from

the application of one model version versus the other. However, for the

samples studied thus far, no conclusions can be drawn as to the superi-

ority of one approach over another. Of far more practical significance

are differences in the estimates of N caused by the way in which data

3-24

are initially collected that later require questionable assumptions for

their analysis.

In six out of eight cases for Projects 1, 2, and 3, the Poisson tended

to yield the lowest estimate of N, with larger estimates respectively

being obtained from the binomial and least squares model versions.

For Projects 4 through 7, the lowest estimate of N was always given by

the least squares model, followed by larger estimates respectively

obtained for the Poisson and binomial versions.

All estimates of N appeared reasonable given the cumulative number of

historical errors observed. "Reasonable" here is meant to imply two

aspects of the acceptability of the estimate. The first aspect deals

with the statistical acceptability; i.e., estimates of N that are smaller

than the errors already observed would be considered unacceptable or

invalid statistical solutions. The second aspect concerns the opera-

tional acceptability or usefulness of these estimates from the project

manager's perspective. If these estimates had been considerably larger

than the errors observed (e.g., 5 to 10 times as large), particularly

given the apparent extensiveness of testing that the software for these

projects had undergone, the project manager would not be likely to

accept the results as being very useful.

3.2.5 Conclusions Based on Analysis of Historical Data

The following conclusions were drawn based on the analysis of data from

Projects I to 7:

(1) There were no significant differences in the

goodness of fit among the binomial, Poisson, and

least squares model versions.

3-25

(2) In most cases, improved fits of the model were

obtained under the assumption of variable testing.

(3) In cases where poor fits of the model were obtained

or differences of practical significance in the

estimate of N vere noted, the results were viewed

as providing an indication of:

* the sensitivity of the model to the assump-

tions made about the data; and

* the lack of throughness of testing of the

systems being analyzed.

(4) The results and conclusions presented are consid-

ered applicable to both software errors and soft-

ware problem reports for the samples analyzed.

In general, the results point to the need for future data collection

efforts to collect error history and test data that meet as closely as

possible the model data requirements and assumptions (see Section 5).

The model does show a great deal of promise to apply to future software

development projects, especially when appropriate data are collected.

3-26

-.- -~-- i

3.2.6 Model Validation by Means of Simulation

During the performance of this contract, considerable attention was

given to achieving a more complete understanding of the model's behavior

and characteristics under known conditions of software development and

test. A software error data simulator program was developed and used as

an analytical tool which assisted us in achieving this required understand-

ing.

3.2.6.1 Purpose of Data Simulator

The data simulator program was developed to assist in studying the

effects of random error on the accuracy of the model parameter estimates.

These effects are studied using software error data generated by the

simulator, according to user-specified conditions of development and

testing. Some background describing the role of simulation in our model

validation studies is discussed in the following paragraphs.

Experiences in applying the models to ongoing projects, as well as to

historical error data, have shown good indications of fit to a wide

variety of software development error data. However, questionable

assumptions (as made for Projects I to 7) have been neces-ary about the

data prior to many of the analyses, simply because relevant information

about how the software system was tested was either not collected or not

available.

On occasions when a poor fit of the model to the historical data was

obtained, it became difficult to determine if this lack of fit was due

to the model or to the data, particularly if assumptions had to be made

about the data. Ideally, when examining the behavior and characteristics

3-27

of the model, it should be possible to completely put aside questions

concerned with the validity and quality of the error data. To do this,
error data needs to be generated according to user-specified development

and testing conditions,and in a way that closely meets the assumptions

of the model.

It is expected in the real world of development and testing that error

data will always have some amount of statistical error in it that keeps

it from perfectly meeting all the assumptions of the model. An analyt-

ical tool was needed, then, that would allow us to generate the required,

near-perfect error data according to predetermined software error,

development and test conditions. The data simulator was the tool devel-

oped to meet this need.

3.2.6.2 Simulation Approach

The approach to model validation using simulation was as follows. The

software test conditions to be studied would first be identified. For

example, consider that we wish to examine model results for a system

that has been incrementally under test for five occasions and whose

known values of N, q, and a are 1000, 0.2, and 1.0, respectively.

Consider also that the test effort on'each occasion was constant (say two

units of testing per occasion). Perfect error data would then be generated

according to the conditions specified, using equation (2.6) for the

expected value of errors for the system. The expected value and standard

deviation for each occasion would then be used to generate various

samples of random error data normally distributed about the perfect

values. Each of the models would then be run to estimate N, q, and a

for each random sample of simulated error data. An assessment was then

made of the accuracy of the model estimates of N. A summary of this

3-28

approach is presented in Figure 3.2.6.2-1 for the example conditions

specified above.

3.2.6.3 Test Conditions Studied and Results

Admittedly there are a large number of interesting test conditions that

could be examined using the approach outlined. For any condition examined,

the simulation approach was found to be costly, both with respect to CPU

utilization and time required to run the samples for each model version.

For the purpose of this study, the results presented focus on the accuracy

of estimating the parameter N.

Test Condition I

An important problem initially considered was to determine the accuracy

of the model estimates of N when the efficiency of testing was high and

a large percentage of the total errors had already been removed. Earlier

validation results had suggested that the thoroughness of testing of the

system (as reflected by a high percentage of errors found relative to

the estimate of N) may influence the goodness of fit, and hence the

accuracy of the model estimates. This test condition was simulated as

follows:

Test Condition 1 - Assume the system is tested (an equal

amount) over ten occasions with N = 1000, q = 0.2, and

o =1.0.

Ten random samples were generated according to this condition. The

errors detected after ten occasions was high in each sample, ranging from

87 percent to 94 percent of the value of N (1000). The percent average

3-29

Figure 3.2.6.2-1. SIMULATION APPROACH

Problem: Examine the effects of random error on model estimates

Approach:

* Identify software test conditions to be studied

* Generate perfect error data according to these conditions. For

example, given a system incrementally tested a constant amount

over five occasions with:

N = 1000, q = 0.2, e =1.0

1i ti Errors

0.2 2.0 72.00
0,4 2.0 118.08
0.6 2.0 219.57
0.8 2.0 212.53
1.0 2.0 136.02

* Generate normally distributed samples of random error data about

perfect values; e.g.,

Simulated Random Errors

67.27
105.70
222.42
215.73
151.29

* Run models using simulated data and assess accuracy of

estimates

3-30 A
mm a. _ . S..

error in the model estimate of N over the ten samples for each model

version was as follows:

Percent Average
Model Version Absolute Error

Poisson 2.5%
Binomial 2.6%
Least Squares 2.7%

The goodness of fit for all samples using each model was very good as

expected, with values of r = .99 in all cases. These results essentially

indicate that for the test conditions specified, with a high percentage

of errors already removed, approximately 97 percent accuracy was achieved

with each model version. Results similar to these were also obtained

when the test conditions were changed to reflect variable testing over

all occasions.

Test Condition 2

A second test condition was set-up to examine how many data points of

error history are needed for the model to provide reasonably accurate

estimates of N. This issue is closely related to the first test condi-

tion studied, in that an increase in the number of data points should

correspondingly reflect an increased percentage of detected errors which

should, in turn, lead to improved accuracy in the estimation of N.

For test condition 2 the following assumptions were made: N = 5000,

q = 0.02, a = 1.0, and 100 test occasions were specified, wherein the

entire system (i.e., w. = 1) was tested equal amounts (ti = 1) over all

occasions. Five samples of 100 random error observations each were

generated. Using only the binomial model, estimates of N and q were

then obtained for each sample using 100 data points, then 99 points, 98,

etc., all the way down to using just the first two or three points. In

many cases when only a few points were used, the model did not converge

3-31

to a solution. The results are summarized by observation interval and

are presented in Figure 3.2.6.3-1.

The results of this analysis, applicable to the test conditions examined

thus far, indicated the following:

Random fluctuations in the data did significantly

influence the amount of error observed in the model

estimate of N when ten or fewer observations were

analyzed.

e An accuracy of greater than 90 percent was achieved

when twenty or more observations were used.

* An ideal accuracy of 97 percent to 98 percent was

obtained when approximately 75 percent of the total

errors were detected.

* For the test condition examined, the goodness of fit

of the model, and hence the accuracy of the estimate of

N, are unsatisfactory for less than ten observations.

In an attempt to verify these results using a different but comparable

set of test conditions, simulated error data was generated for 50 data

points with N = 5000, q = 0.0100505, a = 1.0, and all t. values set
1

equal to two. By doubling the test effort as indicated and using the

value of q specified, the effective qi being examined is 0.02, as used in

the earlier Lest condition.

As before five random samples were examined, with the binomial model

being run first with 50 points, then 49, 48,...etc., for each sample.

The results obtained using 50 observations were compared with the previous

sample results obtained using 100 observations; samples with 49 data

3-32

.. A

Figure 3.2.6.3-1. SIMIULATION RESULTS FOR TEST CONDITION 2

40 -N -5000, . 0~.2

% ERROR
IESTIMATE 35

OF TOTAL
ERRORS (N)

30

25

2:

10.

2-9 10-19 20-29 30-39 40-49 50-59 60-69 70-79 80-89 90-100

NUMER OF OBSERVATIONS .
Percent Average Absolute Error as a Function

of Number of Data Collection Points

Obsrvaios Ero Rage ofr 2 Range for Percent of

Observations ErrorRngesof Errors Detected

2-9 37.6(a) .07-.27 6-16
10-19 24.6(b) .22-.69 18-32
20-29 6.5 .72-.80 33-45
30-39 5.1 .81-.85 46-55
40-49 3.6 .85-.87 56-64
50-59 4.0 .87- .90 65-71
60-69 3.4 .90-.92 72-77
70-79 2.7 .92-.93 77-82
80-89 2.1 .93-.94 82-86
90-100 2.3 .94-.95 86-89

(a) No. Samples =20

(b) All following results based on 50 samples per observation interval.

3-33 1.

points were compared with previous sample results using 98 data points,

and so on. Essentially, no significant differences were obtained in the

results as previously stated for this comparable set of test conditions.

3.2.6.4 Conclusions Based on Analysis of Simulated Data

Validation of reliability models by means of simulation as described

here is a feasible and meaningful alternative to validation using histor-

ical error data. This is particularly true when data have not been

collected according to model data requirements and assumptions, or

questionable assumptions have had to be made about existing data in

order to analyze it. The results presented here show strong indications

of the ability of the models examined to fit actual software error data

that are collected in a manner which maximizes, to the extent possible,

the close agreement of the data with the model assumptions. Lastly, we

conclude that further work needs to be done in this area, wherein the

effects of systematic and simultaneous variation of parameters (N, q(or

4), a , ti, w) can be examined.

3-34

3.3 OPTIMUM TIME INTERVAL FOR DATA AGGREGATION

In many instances in statistical analysis, it is necessary to aggregate

data. For our purposes, that aggregation must be over time. Statisti-

cally speaking, however, whenever data are aggregated over time information

is lost as a result of its reduced variability. An important area

addressed by this contract effort was to determine how data aggregated

over different time intervals affects the variability or accuracy of the

model parameter estimates and goodness of fit.

A simulation approach, similar to that described in Section 3.2, was

used to address this problem. The use of historical data to address

this issue would be questionable, since it has been shown to violate

model assumptions.

Using the simulation approach, a test condition was initially specified

of a system constantly under test. An equal amount (ti=1) of testing

effort was specified over 100 occasions with N = 5000, q = 0.02, and

a = 1.0. Aggregations of software error data were then obtained by

varying the number of points within each time interval. Using the

values of N, q, and a as specified, random samples of aggregated error

data were generated for 2, 4, 5, 10, and 20 point data aggregations.

What was being accomplished here was the successive aggregation of data

points taken from an initial sample containing 100 observations of

errors, generated with N = 5000, q = 0.02, a = 1.0, t. = 1.0, and w. = 1.0.1 1

For example, the two point aggregated sample contained 50 observations

similarly generated with the exception that all the t. values were1

t. = 2. The four point sample contained 25 observations, generated with1

t. = 4; and so forth for the remaining aggregations. Ten random samples1

were generated for each set of data aggregations (1, 2, 4, 5, 10, 20).

The binomial model was then run against all 60 samples to determine the

estimated values of N and q for the test conditions specified.

3-35

:, ... ; , 2-, -.,1

The results of this analysis are presented in the following table, which

describes the percent average absolute error in the estimated value of N

for each set of 10 aggregated data samples.

No. of Percent
Data Points Observations Average
Aggregated per Sample Absolute Error

1 100 1. 8%
2 50 1.5%

4 25 O. 9%
5 20 1.2%
10 10 1.6%

20 5 1.6%

The goodness of fit of the model was very good in all cases,with values

of r2 ranging from .93 to .99 among the 60 samples analyzed. The percent-

age of errors found in all samples was essentially the same, ranging

from 85 percent to 89 percent of N = 5000. These results, limited to

the test conditions examined, indicate that when random fluctuations are

present, the way in which the data are aggregated has no impact on the

model estimates. Thus, when the assumptions of the model are met, the

level of aggregation has no influence.

These results apply only to the test conditions specified, which include

the values of the parameters as well as the percentage of the total

errors which are assumed or detected. A more thorough study would be

required before more general conclusions could be drawn. Further study

would be directed at a systematic variation of the model parameters, as

well as the percentage of errors detected.

3-36

I

3.4 TIME TO A SPECIFIED NUMBER OF REMAINING ERRORS

There are two aspects to the problem of estimating time to a specified

number of errors. One of these is the detection time and the other is

repair time. We first discuss the problem of detection time and then

discuss the problem of repair time.

In a system where no additional errors are made in attempting to correct

errors, the problem is to estimate the total number of errors remaining at time Ti,

denoted as Nri , subtract the specified number Nrs , and then estimate the

time to detect the difference Nri - N r. However, in order to have a

specified number remaining, we must detect (and correct) an additional

number due to reinserting errors in the attempt to correct other, known

errors. Let us denote the probability of detecting an individual error

as q, and the probability of correcting the error once it is found as a.

The process we are modeling may be depicted in a tree structure, as

shown in Figure 3.4-1. The nodes of the tree represent the number of

errors remaining and the links represent probabilities of transition.

At each stage we are depicting the number of errors remaining, given

that one has been detected. This figure terminates at Stage 3, but

subsequent stages would be similar, except that we terminate (reach an

absorbing state) a branch of the tree when the number remaining is Nrs.

The problem then becomes the estimation of transition times and probabili-

ties to reach the specified number, Nr8

3.4.1 Formulatio

Let us denote the time associated with the detection of error n. as t..1 1

According to our assumptions that errors found are proportional to errors

remaining, and the error probability is constant and a function of time,

the expected number of errors on the ith plus first (i+l) test occasion

is: []+
[+l N ril1 - (1-q) 1+1 (3.4)

3-37

'I!

(D-.cli
z0

Z

70

2F~

IT

O0,

0700

.,4

3-38

Without loss of generality, we may consider the errors one at a time,

assume that one is found and solve for t(N 1), the time required to
(Nri-

reduce the remaining errors by one. We have, then, by setting the expected

number equal to one:

ti+l 1

(i-q) 1 -N--, or
$ ri

t -t - 1 in(135
(N ri-1) - i+1 - £n(l-q) n Nri

The quantity Tis, defined as the total detection time required to

reduce the errors remaining from N ri to N under perfect debuggingrz rs

(i.e., a--l), is then

(Nri-Nrs)

TiLs =i= _n((N £n r (3.6)
ri U7(1-q) Nri

j=1

This quantity will be used later. We now turn to the problem of the

number of detections required and the total time required to reduce the

errors to the specified number under imperfect debugging conditions.

Define the random variable x as the total number of detections required.

Then x will range from (Nri - N) to infinity, and its probability
ri rs

distribution will be determined by a, the probability of correcting an

error.

The following table shows the distribution of x and the times associated

with various values of x. In order to facilitate discussion let us

define the minimum value of x as r = Nri - N

3-39

x Probability of (x) Time to Detect x

r ar arT.

r+ (. 1) ar(l-) (14) or(1-0) T,.

r+3 (r+2) a ri 00 3 (r+3) ofr (1-U)3T

These probabilities and times can be calculated from the negative binomial
distribution.

The general form of the negative binomial probability distribution is:

f(x;k,e) X- e8 (1-0)xk

The random variable x represents the number of trials required to achieve

k successes, where an individual success has a probability 6 of occurring.

The mean and variance of this distribution are:

Sv(x) = -)

In our example, both x and the time required to detect x can be repre-

sented by the negative binomial. In the case of x, the number of trials

(detections) required to achieve r successes (error reductions), it is

3

3-40

distributed as a negative binomial with kr. The time required to

achieve x successes is obtained by summing the values in the final

column. Thus:

T' T~.5 (r) r1)

j =0

= T. r+1

a j0 ~(r~ri) (-)'

=T. (3.7)

since the summation represents a probability distribution which

sums to 1, i.e., a negative binomial with parameters r and ar.

3.4.2 Example

An example of the application of these formulas can be seen by the

following:

Number of errors remaining: N ri = 10

Specified number of errors remaining: N = 5rs
Probability of error detection: q = .02

Probability of error correction: a = .90

Then:

9g In(.98)10

~8 in.98 9n1

5 W-(98) \ 6

3-41

T in1 e -34.31
i*s 10-j = £n(.98) 10

j=l
and _ 3and_ 34.31 = 38 12

jis .9

This approach is actually independent of the assumptions made in deriving

the quantity for time in (3.6). The assumptions could be replaced by

any corresponding set and inserted into (3.7). For example, one common

assumption utilized in software reliability theory is that the number of

errors found is proportional to the number remaining in such a way that:

=N1

In such a case, for the present example, we would have (*=.02):

= 1
9 10(.02) =

t = o02) = 5.56
1-

t = 8(.02) 6 0.25

- 1 714
6 7(.02) -

t5 =6(.02)-8..

Then

T. = 32.28

and from (3.7)

T''s = 35.87

Equation (3.7) may also be used to incorporate correction time. The

times for detection and for correction may be derived by any theory, or

combination of theories. For example, we might assume that detection

3-42

time is determined as our model dictates, and that correction time is a

constant or independent of the number of errors remaining. Or, on the

other hand, we might assume that correction time is proportional to the

number of remaining errors.

3.4.3 Combining Detection and Correction Times

To illustrate the application of the approach to correction time as well

as detection time, suppose we had the follohing situation:

Number of remaining errors N = 5r

Specified number of remaining errors N = 3s

Probability of correcting a detected error a = .9

Error detection rate qd = .02

Error correction rate qc = .05

We further assume that the times to detection are given by (3.6) and

that the times to correction increase in inverse proportion to the

number of errors remaining. Then, for detection we have:

_ 1 3=o.

T5*3,d - In(.98) 5

The correction times are:

1 1
T = (0)+ 9.0
543,c - 5(.05T 4(.05)

Combining the two we have:

TtV3 = 25.3 + 9.0 34.3

Using (3.7) we have

T; =34.3 38.1
--3 .9

3-43

If we had assumed that the detection times as well as correction times

were inversely proportional to the number of errors remaining we would

have had:

T5 3,d = 22.5

T5>3, c = 9.0

T54 3 = 31.5

T' = 35.0

Table 3.4-1 shows the times to reduce errors to a pre-specified number

as a function of the assumptions made as well as the parameters. Under

time to detect, assumption (1) is that detection time increases according

to (3.5), while assumption (2) is that detection time is inversely

proportional to the number of errors remaining. Time to correct is also

assumed to be inversely proportional to the errors remaining.

Note in Table 3.4-1 that no calculations are made for the situation of

reducing the number of errors to zero. In this case Assumption (1)

leads to an estimate of infinity. That is, to find the last error in a

program which is known to contain some errors would require an infinite

amount of time. Thus, one can never be sure that the last error has

been found.

In general, to reduce the number of remaining errors Nri to a specified

number, Nrs , under assumption (2) is:

"Nri Nrs (NriN rs)

T. S t . 1 and
i-s E (N ri. =q (N ri d

j=1 j=1

3-44

Table 3.4-1. TIMES TO REDUCE REMAINING ERRORS TO A
SPECIFIED NUMBER

N r=10, a=.9, qd=.02, qc=.05

Remaining
Errors Time toSpecfiedTotal Time
Specified Assumption Assumption Correct Assumption
(N) (1) (2) (T10*s) (1) (2)

9 5.79 5.56 2.22 8.01 7.78

8 12.27 11.73 4.69 16.96 16.42

7 19.62 18.67 7.47 27.09 26.14

6 28.09 26.61 10.64 38.73 37.25

5 38.12 35.87 14.35 52.47 50.22

4 50.39 46.98 18.79 69.18 65.77

3 66.22 60.87 24.35 90.57 85.22

2 88.52 79.39 31.75 167.91 111.14

1 126.64 107.16 42.87 169.51 150.03

3-45

, :**trt

(NriN r s)

T1
is = j=i (Nri-J)

For large values of Nr the calculation using this formula is not formid-

able with a digital computer. However, for the sake of overall economy,

an approximation may be used.

The approximation is:

n

= £n n + c + n 2
i= 2n 12n 2

where c = .5772 (Euler's constant)

Putting this equation into our notation we have

Nri Nrs
T "-_ AE 1 l_ a

aq i=l i=

TI. s I -+ 1N 1 (
aq rs r 12Ni rs rs J

The accuracy of this approximation may be evaluated by using it for the

detection times in Table 3.4-1. For comparison, the actual values are

reproduced from that table.

/

3-46

,+~~ ~ ~ ~ 1 A

N = 10, a .9, q = .02

Time Estimated
ErrorsNSpecified Actual Using Equation

s Time (3.8)

9 5.56 5.56
8 11.73 11.73
7 18.67 18.67
6 26.61 26.61
5 35.87 35.87
4 46.98 46.98
3 60.87 60.87
2 79.39 79.41
1 107.16 107.50

Thus, for even small numbers of errors the approximation is in excellent

agreement with the actual.

For larger values of N the approximation will be even more accurate.r

The following table shows the time to reduce the original errors of 100

to various values, with affi.9 and qd.02.

N Detection
s Time

90 5.82
80 12.33
70 19.70
60 28.19
50 38.23
40 50.49
30 ,66.24
20 88.31
10 125.47
1 232.97

3-47

3.5 MODEL FORMULATION WITH VARIABLE DETECTION PROBABILITY

In this model we allow for a probability of detection which first increases

by a constant amount until a peak is reached, at which time the probability

becomes constant. This formulation is roughly equivalent to a learning

curve. Translated into the software testing world, it would be equivalent

to a testing team beginning to test on a system with which they are

unfamiliar, but with increasing experience becoming increasingly effi-

cient until a plateau in efficiency is reached.

According to this formulation q increases on each test occasion by a

constant amount c, until it reaches a maximum of q + (j-l)c on occasion j.

This maximum value then applies to the remaining (j+l) to k additional

occasions. For this derivation we have assumed that time intervals are

equal, the total system is constantly under test, and the probability of

correcting a detected error is 1. The reason for making these assumptions

for the derivation is that there is a danger of'over specification of

the model. That is, the increased probability might very well be due to

some of these factors. If they were actually incorporated into the

model, we would then be accounting for them twice, thus overspecifying

them.

The acid test of the generalization to include a variable detection

probability is how well does it fit actual data. Thus, a first step in

the use of the equations resulting from the model would be an application

to actual data.

Three equations result for this formulation. They would be used to

estimate the three parameters: N, total number of errors in the software;

q, the probability of detection; and c, the constant increase in q.

3-48

*

The equations are:

N (1I q -ic)] [1~ q -(j-i)c] k.. (3.9)

N

ni__ + I N k N' 1 - i +

i1q + (i-l~c q + (j-l)c Ii=1(iI)

I -- (Fa) (Nk ~ . (3.10)

q (jj)

in N k i N , +

i1q + (i-I)c q + (j-1)c 1-q -(i-1)c

____________ (N - N.)..(1)

where:

q-(
7-

N = Estimate of total error population

Ni = Total observed errors through occasion i

N k= Total observed errors on occasions j + 1 through j+ k

n. = Observed errors on occasion i

3-49

q = Estimate of error detection probability

c = Increment in error detection probability estimate

j = Occasion on which probability of detection reaches a

maximum

k Total number of occasions after j.

The occasion (j) on which the probability of detection reaches a maximum

should be determined from a visual inspection of the graph of the number

of errors versus time.

These equations have not been applied to actual data, so there is no

experience to draw on. It should be noted that the detection probability

does not necessarily reach a maximum on the same occasion as the maximum

number of detected errors. As a matter of fact, the detected errors may

be at a maximum on the first occasion with the probability reaching a

peak at some later time. To guard against this eventuality, several

values of j should be tried and that value chosen that gives the best

fit of observed to actual data.

3-50

Vm

3.6 NARROWING THE RANGE ESTIMATES OF MODEL PARAMETERS

When the assumption is made that the probability of perfect error correc-

tions is less than one (i.e., a < 1) and the test effort is constant

over all occasions (e.g., all tI = 1), the three model equations (for

any model version) in the three unknowns N, q (or 4), and a are not

independent.

The resultant equations determine limits of the three parameters and the

reliability estimate derived from them. These limits are dependent such

that the specification of any two parameters uniquely determines the

third. For example, for a given set of observed data, the maximum value

of N implies that q or * is a minimum and a is at its maximum value.

Whereas the minimum value of N implies that q or 0 is a maximum and that
a is a minimum. It should be remembered that N represents the original

number of errors in the software.

The dependence of the three equations arises from the assumption that e'

is a constant and is proportional to the number of errors detected on a

particular occasion. There are several ways of analyzing this dependence.

One is to provide an estimate of a from previous experience. Another is

to change the assumptions so that independent equations may be derived.

Still another is to consider the range'estimates as a valid output of

the model, but to examine the equations more closely so that the range

estimates can be narrowed. The approach taken to this problem was to

narrow, if feasible, the range estimates of the model parameters.

3-51

The analysis was started considering that for any given set of error

data, the natural lower limit for N is as follows:

when a I

k
=

when a < 1,

k k k
N min n - (1-)__n. aL i

where:
k

n. is the total number of errors observed to date over k

occasions.

Considerable attention was devoted to the study of this problem. Four

alternative methods of solution to the model equations were developed

and applied in an attempt to find unique solutions for N, q (or #), and

a that were within the range estimates for these parameters. Internal

software error data were used in this analysis.

The net result of this effort was that no unique solutions to the equa-

tions were found to exist under these conditions, and that the range

estimates should be considered as valid output from the models.

Some practical suggestions can be made, nevertheless, with respect to

specifying the ranges within which given iteration and convergence

procedures (e.g., Newton-Raphson) are allowed to search for a solution

to the three equations. A reasonable upper bound for N would be

Nmax < lOONmin' If no more than 1 percent of the errors have been

removed, then testing and debugging should be the primary concerns

rather than modeling.

3-52

4.- v.-

Ranges for q (or 0) and a are suggested as follows:

0 < q (or) .5

.5 < a < 1

The rationale for q (or) min is that if errors have been detected, then

clearly (qmin * 0). Operationally, a q (or)max < .5 is a reasonable

upper limit since no one testing occasion is likely to be more efficient

than to detect over 50 percent of the errors.

The bounds for a are determined from a certain degree of faith in the

programmers. A value of a less than .5 would imply that the programmers

who are debugging the detecting errors are making more errors than they

are correcting. This seems unreasonable. Therefore, the lower limit is

taken as .5.

3-53

i . ..

3.7 VARIANCE AND CONFIDENCE LIMITS FOR MODEL PARAMETERS

To determine the variance and covariance estimates of the parameters N,

q, and 0, we define:

A 82 enL a2L _2__

3N3q aq2 aOaq

a2a nL a2 InL a2 UL
Naa 8q8a aa 2

where:

L is the likelihood function for either the binomial or Poisson

maximum likelihood formulations as presented in Section 2.0.

The elements of the inverse of this matrix then give the variance and

covariance estimates. Thus:

2 Nq qONCaPN

A NqNPqN 2 atqqa

Confidence limits for the estimates of the parameters are obtained by

assuming a normal distribution of the errors of estimate and using the

square-roots of the diagonal elements of A-I as the standard deviations.

Thus, the 95 percent confidence limits for a parameter would be the

estimate of that parameter ± two standard deviations.

3-54

The equations to estimate the second derivatives of the likelihood

functions were actually derived, and the elements of A-1 were evaluated,

using project error data and parameter estimates obtained from this

data. This was accomplished for the least squares as well as the binomial

and Poisson maximum likelihood model versions. The resulting equations

for the variance estimates of the model parameters were, in each case,

quite complex. When confidence intervals for N, q, and a were evaluated

using these variance estimates for a given set of data, they were found

to be quite large thus having little practical value in actual model

applications. Based on these results, no further work was performed in

this area.

4 3-55

fLjI

3.8 COMPARISON OF DISCRETE MODELS WITH WEIBULL DISTRIBUTION

The purpose of this task was to determine the form of the Weibull distribu-

tion which fits error history data, and to show the relationship of the

binomial and Poisson model parameters to those of the Weibull.

The general form of the Weibull density function is as follows:

f(t;aY) = ap(t-Y) '1 e a (t-Y)p (3.12)

with the cumulative probability,

P(T<t) = F(t;a,_,) = 1 U (tY) (3.13)

where:

a is the scale parameter (a>O)

is the shape parameter, and (0>0)

y is the location parameter. (t>y)

For the Weibull model, the likelihood function is:

k 0-1 ea(Ti-) (
L= -))(3.14)

i=1

where:

k is the number of observations or occasions;

T. is the cumulative time through occasion i.

Taking the logarithm of (3.14) yields:

~k
.nL = kina + kno + (P-1) An(Ti - y) - a (Ti " y)P (3.15)

i=3

3-56

The maximum likelihood estimates of the Weibull model parameters are the

solutions to the following set of equations, the partial derivatives of

(3.15) with respect to a, , and y:

k
8.nL = 0 = k - (T.)-

aa i=l

k k
BtnL = 0 = k + I £n(Ti - y) - a E (T. - Y) n(T i - Y)

a n = 0= aP (Ti -) 1 (P))
a i=l 1

Once estimates for the Weibull parameters are obtained, an equation is

needed for the estimate of N, the total number of errors in the system.

Toward this end, (3.13) is used to determine the expected number of

errors (N') detected through time Tk:

N N 1- e-'(Tk - 7) I (3.1.6)

where:

T is the cumulative time through occasion k.

Using (3.16) the estimate for N is:

N Nk (3.17)

I- e-a(Tk'Y)

where:

Nk is the cumulative number of errors observed through k.

3-57

7 AD AA8 334 IBM FEDERAL SYSTEMS DIV GAITHERSBURG MD F/6 9/2

ANALYSIS OF DISCRETE SOFTWARE RELIABILITY MODELS.(U)
APR 80 W D BROOKS, R W MOTLEY F30602-78-C 0346

NCLASSIFIED RAOC-TR-80-84 NL

I I

ILfIIIIIIIIIIIIIIIIIIIIIIIIl.fllfl

=11111 2

IIII1 IIIIII , 8
MIR 1.50 I"I'

1111= 1111 1.4 111.6

liii 111 1 11111.6

MICROCOPY NE SULUI IHI 1 '. (HEART

This equation for N may be directly compared with that of the binomial

model assuming equal time intervals. That equation is:

N= Nk

Thus, for equal time intervals, and noting that:

tim (1 - x) e-, for (0 < x <)
x-+O

the parameters of the Weibull are related to the binomial and will give

the identical estimates of N if:

k =, and

q = a (Tk-Y).

The Weibull model is useful as a curve fitting tool. But theoretically

and operationally, the parameters of this model do not lend themselves

to direct comparison and interpretation with those of the binomial and

Poisson when applied to the real world of software development and

testing. Application of the Weibull model to software error data essen-

tially indicated that all three model parameters (a,f,y) need to be
estimated before reasonable agreement with observed data is obtained.

3-58

SECTION 4

MODEL IMPLEMENTATION

4.1 INTRODUCTION

The software reliability models described in Section 2 have been developed

to support project management requirements for timely software reliability

analysis during the development process. The models have been implemented

in APL at IBM/FSD Gaithersburg. The purpose of this section is to

briefly describe and highlight the capabilities provided by these model

programs. It is also intended to further aid the reader's understanding

of:

9 The rational for and usefulness of the module and

system level versions of the reliability model; and

* The manner in which software error data is specified

as input to these models.

4.2 CAPABILITIES

When supplied with the required software error data, the reliability

model programs can provide the following information about the software

system under development:

Estimates of:

The total number (N) of software errors originally

present in the software system prior to testing;

4-1

The probability (q or *) of detecting any one error
during a user specified unit of test effort; and

The probability (a) of correcting an error without

reinserting additional errors and exposing others to

discovery.

Based on each of the estimates as previously indicated, the following

additional information is provided as part of the program output:

" The model's fitted points to the observed error history

data.

" A measure of the goodness of fit and accuracy of

prediction between the model's fitted points and the

user's software error data; a chi-square statistic and

correlation coefficient are respectively provided for

this purpose.

" A direct measure of the percent of variation in the

observed data that can be accounted for using the

model's fitted points; the squared correlation coeffi-

cient is used for this purpose.

Once estimates of N, q (or #), and a are obtained from any given model

run, other meaningful statistics related to software reliability can be

computed by the user according to the appropriate mathematical formula

or equations described in other sections of this report. Some of the

statistics that can be computed using these model estimates are:

" The number of errors remaining in the software.

" Predictions of future error occurrences based on

additional testing effort specified by the user.

4-2

" Measures of software reliability with and without

additional testing effort.

* Probability of passing a user-specified requirement

test (e.g., the probability that.no more than 10

system reload type software errors will occur during a

200 hour customer acceptance test).

" Future test time required to achieve a specified

reliability.

4.2.1 Model Versions

Essentially, there are three different versions of the software reliability

model. These versions are referred to as the binomial maximum likelihood

(BML), the Poisson maximum likelihood (PML), and the least squares

version (BLS). Each of these model versions has been implemented to

estimate either 2 (N and q) or 3 (N, q, and a) model parameters according

to the user's needs, and to process error data collected at either the

system or module level. The APL model versions are referenced and

identified as follows:

I
Module Level System Level

2 Parameter BMLM2 BMLS2
PMLM2 PMLS2
BLSM2 BLSS2

3 Parameter BMLM3 BMLS3
PMLM3 PMLS3
BLSM3 BLSS3

With the two parameter model versions, user's may specify the value of a

to consider when estimating N and q. When using the Poisson models * is
estimated in place of q.

4-3

;," ;1-

4.2.2 Module Level Models

The APL module level model versions allow the user to:

" Estimate N, q, and a for each individual module or

subsystem that comprise the total system. When used

for this purpose, a model run will be required for

each of the modules that the estimates are needed for.

Once obtained, these estimates apply only to the

module or subsystem for which the error data were

collected and analyzed; or

" Estimate N, q, and a for the entire software system,

using all available error and test data that has been

collected at the module or subsystem level for this

purpose. The fitted points for each module are also

provided in this case.

The form of the input data required to use the models at this level is

as follows:

MODULE LEVEL DATA

nil n12 . nlj

n2 1 n22 . 2- n

nil ni2 --. nij

tl t .. tij

t 21 t2 ... t2j

ii i2 iti* tj 2 "" ta

SV1 w2 ... w.

4-4,__V

where n1j represents the software errors observed over (i = 1,2, ... k)

test occasions for (0 = 1,2, ... m) modules or subsystems; t.. is the

testing effort expended over the k test occasions for the m modules; and

w. (j = 1, 2, ... m) represents the percentage of the total source lines

of code that each module represents. For example, if the size of module

I is 5,000 source lines of code (SLOC) and the total system size is

50,000 SLOC, then the weight (wI) for module I would be 5KSLOC/50KSLOC =

0.10. The weights for the remaining modules are computed accordingly.

The weights (w.) as used at the module level are considered to be constant

over all test occasions.

Two notes are important to mention here. First, it is frequent that

software error and test data have not been collected or are not available

at -lower levels other than at the total system level. The system level

data in this case would simply be a one column matrix (with dimensions

2k + 1, 1) containing the n. and t. values for k test occasions for the1 1

system, followed by the constant value for the system weight (w.) to be

assigned over all occasions. The module level versions can process this

data under the assumption that equal portions (i.e., percent of total

size) of the system have been under test on each occasion. In most

cases this would be 100% of the system under test over all occasions

(i.e., a weight of 1.0). If this assumption is not reasonable or real-

istic, then the system level data with the appropriate weights for each

test occasion can be processed using the system level model versions.

Second, when the module level versions are being used to estimate N, q,

and a for the entire software system using the lower level module or

subsystem data, it is common that some modules will be in and out of test,

in effect not being tested on all occasions. When this occurs, the

values for errors (n) and test time Ct) are set to zero for those modules

on those occasions.

4 4-5

Milk:

4.2.3 System Level Models

The APL system level model versions allow the user to estimate N, q, and

a for the entire software system. These versions have been developed to

accomodate the situation wherein testing on each occasion is performed

on and measurable at the system level, or at least at some level higher

than the module level. This implies that for each test occasion the

module/subsystem level exror (nij) and weight (w.) data have been recorded,

and only one value of test effort (ti) for the occasion is measured and

recorded.

The form of the input data required to use the models at this level is

as follows:

SYSTEM LEVEL DATA

n 11 n 12 • • -n ij w 1 1 w 12 . . w ij t

n2 1 n22 ... n2j w2 w22 2j t

n a n. w.
t i

t il i2 ij il i2 " " i

where:

n has the meaning defined for the module level;

w module j was tested on occasion
0 otherwise

t i the test effort expended on the system during the

ith occasion.

4-6

.,, -., : !I ______________I

4.3 MODEL PROGRAM DOCUMENTATION

A User's Guide for the software reliability models has been delivered to

RADC as part of this technical contract effort. It's contained in a

deliverable document dated October 1979 entitled Software Reliability

Model Computer Programs and Documentation. It further contains example

inputs and outputs and all the APL program functions needed to implement

each of,the models discussed in this report.

$ 4-7I _ _ _ __

SECTION 5

DATA REQUIREMENTS FOR SOFTWARE RELIABILITY ANALYSIS

5.1 REQUIREMENTS

The models described in this report have been developed and applied to

meet a variety of project management reliability information needs.

From project to project these needs may differ. On one project, error

data may need to be collected at the detailed module level; on another,

just at the system level. In some instances, the need for reliability

measurement and prediction may dictate that only software errors of a

specific type or classification are needed in the analysis. The essential

message here is that the amount and detail of data required for analysis

by the model is very heavily dependent upon the reliability information

needs of the project manager, customer, or user.

In general however, whenever the model is applied to estimate 2 (N and q)

or 3 (N, q, and a) parameters for a given module, subsystem, or system,

four basis elements of data will be required. Table 5.1-1 summarizes

these data requirements. A detailed discussion of each of these data

elements follows.

5.1.1 Test Occasion Date or ID

Although this data element may appear as self-explanatory, a brief

discussion is needed. As far as the model is concerned, a test occasion

may be a single computer run, a series of test runs executed in one day,

a week, or even a month. In fact, it is not even necessary that the

occasion involve computer runs. It may just denote the event that a

certain length of time was devoted to visually inspecting the program

code. Test occasion dates or identifiers should clearly denote the

5-1j _

5I
Table 5.1-1. HISTORICAL DATA REQUIRED FOR INPUT TO HODEL

The following data are required by occasion for each module, subsystem,

or system being analyzed:

Data Element Description

(1) Test Occasion Date A unique date (e.g., 9/79, 10/79...)
or ID (i) or appropriate identifier (e.g. 1,2,

3...) which classifies errors by
their actual or relative sequence of
occurrence in time.

(2) Software Errors (ni) The total number of software errors
detected on this occasion.

(3) Test Effort (ti) A relative measure of the total test
effort expended on this occasion to
detect the software errors indicated.

(4) Weighting Factor (wi) A relative measure of the percentage
of total system source lines of code
that were under tect during this
occasion. (O<wiwl)

5-2

historical time sequence when the errors were detected or observed,

rather than recorded. Lastly, the definition of "occasion" should be

consistent from one occasion to the next.

5.1.2 Software Errors

The theory upon which the models are based is concerned with explaining

software error history characteristics in the real world of software

development and testing. A software error for our purposes is defined

as:

Software Error - any one of a number of different types

of errors whose cause can be directly attributed to the

activity of computer programming and that can be corrected

by a change to the software itself.

According to this definition, software errors can be distinguished from

software problem reports and software changes. Figure 5.1.2-1 is presented

to aid in making clear how the relationships among these types of data

are viewed.

In Figure 5.1.2-1 software problem reports (also called software failures)

are viewed as symptoms or manifestations of latent errors in the system.

The term "error" used here refers to the fact that the real cause of the

problem could be something other than a valid software error. A time

delay is usually associated with classifying the true cause of the

problem. If a software error is the cause, one or more changes to the

software will be needed to correct the error(s). Here too, a time delay

occurs from the time that the problem is reliably classified as due to

software to the time the change is made to correct the err'r.

Often software changes are likely to correct at least one, and often more

than one, software error. In contrast, the fact that a software change

5-3

CL ~ C
C C =i2

LU

E 0

0 200..

CL E mB'U C ~ - cc

e 0

02

5-4

was made does not necessarily imply that a software error is corrected

by this change. For example, our experience has indicated that at times

software changes are sometimes made to work-around hardware problems.

The requirements for the reliability model are reflected by the dashed

line in Figure 5.1.2-1. Narrowing the analysis to these categories does

create problems; mainly due to time delays. At any given time there are

unresolved problem reports. If this number is large, the use of the

model is questionable. If the number is small, an estimate of the

number of problem reports that are likely to be caused by software

errors should be made.

One conclusion is obvious: the number of software errors can only be

approximated using either failures or software changes. Reliability,

defined in terms of the probability of a software error manifesting

itself, requires software errors for its estimation. One reason for

analyzing failures or changes, however, is that either might be quite

useful in predicting errors, e.g., if failures or changes were found to

be consistently proportional to errors over each test occasion. The

validity of the model in estimating problem reports from historical

problem reports has not been fully explored.

It is desirable that software errors be distinguished as such by the

user via software error classification schemes implemented during the

error data collection and correction process. A fundamental issue which

indicates the need for this requirement is that unless software errors

can be classified according to type and/or severity/criticality, then it

must be assumed that all latent software errors have equal probabilities

of manifestation. The validity of this assumption appears questionable.

5-5

i

5.1.3 Test Effort

Under ideal conditions of testing and error data collection, it would be

desirable to record the amount of testing effort required to detect each

software error. In reality, however, testing procedures are directed at

examining the performance of the system as a whole or evaluating selected

sets of functions, which could comprise a mixture of subsystems, modules,

or units; all of this being heavily dependent on the phase of testing

that is underway at a given time.

One critical data requirement is that some objective measure of the

testing effort by function, system, module, etc., be provided by testing

occasion for whatever level of the software system was under test for

that occasion. One desirable objective measure of this testing effort

is CPU time expended to perform the test. Another less precise measure

could be actual wall clock hours expended to perform the test.

One important assumption made for test effort is that one occasion be

comparable to every other occasion in terms of the type of testing

expended in detecting errors. It is not required that the amount of

time between testing occasions be equal. However, there should be no

variation in the method of error detection applied on each occasion.

Recent data analysis results using the software reliability models

described in Section 2 have shown that having a meaningful and accurate

measure of the testing effort for each occasion is critical for obtaining

valid reliability estimates and predictions. One finding that has been

established regarding the testing effort measure is that absolute accuracy

is not mandatory; relative accuracy will suffice. The implication of

this finding is that estimates of testing effort may be used if they can

be estimated accurately in a relative sense. Considering the time for

the first testing occasion as unit time and expressing subsequent times

as a multiple of this time would be adequate.

5-6

S i

5.1.4 Weighting Factor

The reliability model has been developed recognizing that the number of

software errors detected on any occasion is a function of how much of
the system was tested on that occasion. The model, therefore, does

allow for testing situations wherein varying portions of the system are

tested from one occasion to the next. For system reliability assessment,

a data requirement in these cases is a count of the number of source

lines of code under test and the estimated total source lines in the

final system. The ratio of source lines under test to total source

lines in the system is used as the weighting factor.

When testing is being done at the module or subsystem level, it is

necessary to assign a weighting factor for each module. In this case,

the modules tested must be identified along with the number of source

lines of code in each. The weighting factors for each module are defined

as the ratio of the size of the module to that of the total size of the

system.

In lieu of a measure of module or system size measured in terms of

source lines of code, an alternative metric is the number of words of

core used by the modules tested on each occasion relative to the total

words of core for the system. This later measure becomes useful for

prediction purposes as a measure of relative size of the system under

test, if the ratio of words of core required for a given source line of

code is known or can be estimated.

5.2 DATA ASSUlIPION

The software error data collected for model analysis is assumed to be

taken from a system that is stable, i.e., undergoing no significant

change in size, during the testing phase. This assumption implies that

5-7

the system from which error and test data are collected is not signifi-

cantly changing from one test occasion to the next, in terms of lines of

code being added, deleted, or modified, with the exception of changes

needed to correct errors.

The rationale for this assumption is based on the fact that the model is

designed to analyze data representing errors for one system, and not one

set of data representing errors from multiple builds of a system. A new

system build is defined as an update or functional enhancement made to a

previous system version requiring the addition of a significant amount

of new code.

Determining whether or not an amount of new code to be added is signifi-

cant requires reasonable judgement on the part of the user of the model.

The real question to ask in this case is when does a change to the

system significantly affect the latent software error content of that

system. For each new system build it is recommended that a new set of

error data be collected and prior error history not used when estimating

model parameters for the new system.

In many software development environments, the conditions required to

meet this assumption of stability in the software system would only

occur after unit testing has been completed, and would remain true

throughout the duration of formal testing and integration and into

the acceptance and operational testing phases.

One final implication of this assumption is that the error data that

results from overlapping or new system builds be identified and distin-

guished as to which system they belong.

5-8

SECTION 6

SOFTWARE RELIABILITY REQUIREMENTS SPECIFICATION AND MEASUREMENT

6.1 INTRODUCTION

The concept of software reliability has many interpretations, usually

subjective and not very well-defined. In general, it is believed that

reliability should somehow reflect satisfactory performance and freedom

from software errors or malfunctions. In trying to incorporate these

features into a definition of reliability, problems exist in defining

the terms which are used to define reliability.

Perhaps the most serious problem in formulating an adequate definition

is that these features are application dependent. Satisfactory perfor-

mance, and to some extent even error free code, is in the eyes of the

user. What is satisfactory for one user will be quite unsatisfactory

for another one. With ten users there may be no two of them agreeing.

With regard to errors in the software, some users would not be interested

in the number of errors, but rather in the probability of their occurrence

and their impact on the system when they do occur.

In order to serve as a useful measure of performance, a quality, such as

reliability, must be defined in such a way that the method of performance

evaluation is implicit in the definition. To impose a requirement for a

certain level of performance, the statement of requirement must have an

explicit statement of the method of evaluation, or at least strongly

indicate the method.

This section attempts to address one aspect of software quality, namely

reliability. A definition of reliability is given, a statement of the

reliability requirement consistent with this definition is given, and a

method of evaluating the results of a performance test is specified.

6-I

6.2 DEFINITION OF RELIABILITY

The user is, of course, ultimately concerned with how the software

system will perform in an operational environment. Thus, he should

design the performance test so that it represents that environment as

closely as possible. Sinze any test is only a sample of some larger

universe of all possible environmental demands, it is necessary to use

statistical estimates derived from the test results to estimate the

software system's reliability. These estimates are subject to variation

due to two sources of primary concern. One is that the test is not

representative of the environment, and the effects from this source can

be minimized by careful design of the test. The other is that the test

results are not representative of the true performance of the system,

and this effect can be minimized, or at least estimated, by the use of

statistical probability distributions.

To facilitate the application of a statistical distribution, we define

software reliability then as:

The probability that no (or no more than a specified number of)

software errors of a given type will occur during a designated

time interval under specified testing conditions.

In this definition a number of key words, requiring further elaboration,

are underlined.

specified number - in a large system the probability

of no errors is likely to be so low as to be meaningless;

therefore, the definition is expanded to allow up to a

reasonable number.

* software error - an area for negotiation. Some apparent

system failures cannot be resolved as to whether they

6-2

are caused by the hardware, software, or human operator.

In addition failures attributed to the software may

have been caused by an error in requirements, design,

or coding. It is critical that agreement be reached,

preferably before work begins, on these areas.

a type of software error - agreement needs to be reached,

again preferably before the start of work, on the

types of errors to be counted. A separate requirement

might be stated, e.g., for errors characterized as

follows:

Type 1 - an error requiring a re-start of the system.

Type 2 - an error causing an erroneous or missing

output in more than one application subsystem.

Type 3 - an error requiring the use of automatic

recovery and causing an erroneous output in one

application subsystem.

Type 4 - an error causing an output deviating from

requirements more than a specified amount.

* time interval - the length of time for the operational

test should be specified. An agreement should be

reached as to whether down-time is to be allowed, and

what to do about errors (i.e., repair them, patch-around,

etc.) with regard to downtime.

* testing conditions - the specification of the environment

for testing, e.g., inputs to the system and scenarios

for human operators.

6-3

6.3 STATING RELIABILITY REQUIREMMTS

For each of the four types of errors discussed in the preceding section

the reliability requirements are stated in the following form:

The probability that no more than 1 software errors of type x2 occurs

during x3 intervals within a x4 operational test shall be at least x5,

where:

X= number of errors allowed (xl may be zero, where

applicable/ needed)

x2 = type of error (error types as stated above or

others)

X3 = length of interval (hours, days) for which xI

allowed.

x4 = length of operational test interval (hours,

days); should exceed x3.

x5 = required probability (O<p<l), i.e., the specified

reliability requirement.

Thus we allow for a different requirement for each error type, or for

different combinations of types. The length of the operational test

interval (x4) should exceed x3 so that we will have several intervals of

length x3 for calculating the probability.

6-4

6. 4 MMUREM.SOF PERFORMACE

The Poisson distribution (or its continuous counterpart, the exponential)

is appropriate for estimating the performance level for two very good

reasons:

" The Poisson does not require an estimate of the population

of errors (i.e., the number of latent errors of a

particular type).

" The distribution of software errors for fixed time

intervals has been demonstrated to be skewed. Most

time intervals have errors occurring with a low fre-

quency; still some few intervals have relatively high

numbers of errors. The Poisson is a very good distribu-

tion for such events.

The probability density for the Poisson distribution is:

P(x;p) = Xej

x!

where p is the expected value of x.

In actual application, we can translate the requirement statement of the

preceding section into a formula as follows:

xx

[(xx-)] (6.1)

6-5

This formula should be applied for each of the types of error (x2). The

value of p is to be obtained from multiplying the expected errors per

unit time (ni/x4) by the number of time units (x3) in the test interval.

We have finally:

x0xxn exp" xni)

6.4.1 Numerical Example

Suppose in an operational demonstration test of 240 hours (x4) we had

the following requirements:

Error Error Time Interval
Type (x2) Limit (xI) for x I (x3) Probability

1 0 24 .95
2 1 24 .90
3 3 24 .75
4 2 8 .75

Suppose further we complete the 240 hours of run time, resolve all the

failures and the following errors result:

Frequency of2 Occurrence

1 2
2 3
3 24
4 40

6-6OW

1 ..

Did we pass or fail each of the 4 tests?

For Type 1, we have:

P(x <0) = e "

= (2)(24) = .2 errors per 24-hour period
240

P(x<O) = e" 1 5 - .82

For Type 2, we have:

PW<) = x e -1

= (3)(24) = .3 errors per 24-hour period
240

P(x<l) = e 3(1+.3) • .96

For Type 3, we have:

P(x<3) = ixe 1
E X1

= (24)(24)p 2.4 errors per 24-hour period~240

P(x<3) =.09072 [1+ 2.4 + 2 . 62.4 .78-~~ 6 --.7

6-7

I

For Type 4, we have:

2
P(x<2) = pX e _

x= !

= (40)(8) 1.33 errors per 24-hour period
240-

P(x<2) ' .26360 + + f .85

Since the obtained probabilities exceed that required for each of the

four types with the exception of Type 1, we fail to meet this requirement

for Type 1 and meet the remaining ones.

6.4.2 Confidence Level Considerations

In specifying the confidence required (x5) in the probability obtained,

i.e., the specified reliability in an operational test, we are imposing

a severe requirement, especially when the confidence is as high as .90.

This severity may be exactly what the user requires. However, from the

developer's standpoint, and from the standpoint of economics, it may be

desirable to lower the confidence required. At least, the developer and

customer should be aware of just how severe the requirement actually is.

This can be done with the definitions and measures proposed thus far.

To illustrate this point, the requirements for error type 1 are examined.

For Type 1, an error limit of zero errors in a 24-hour operation was

specified. The required probability was .95. The only way this requirement

could have been met was to run the entire 240 hours with no error occurring.

The actual occurrence was only 1 error per 120 hours of testing, which

is .2 errors per 24-hours. Considering the 240 hours as 10 discrete

intervals of 24 hours each, in 8 of these 10 intervals there were no

errors, or in only 2 of the 10 intervals errors did occur. Is this

6-8

performance close enough to that required (excluding the probability

requirement) to indicate a "pass" rather than "fail"?

If one considers this requirement as too severe, he might agree with the

following. A requirement should be stated such that if a performer just

barely meets the requirement, he should be equally likely to fail or to

pass a demonstration test.

6-9

4. __________"____I______'1"-__11_ 1

SECTION 7

APPLYING THE MODEL TO SOFTWARE DEVELOPMENT PROJECTS

In addition to providing estimates of N, q (or *), and a for a given set

of software, other important error and reliability statistics can be

derived using these parameter values. Some of these include the incidence

of future error occurrences, the reliability of the software at some

future time, and the estimated time required to achieve a specified

reliability. Also, on projects where reliability requirements have been

specified, the model can be applied to assist management in the analysis

of trade-offs in the cost of further testing of the system versus increases

in reliability.

The purpose of this section is to provide the equations needed by manage-

ment to derive the error prediction, future test time, and reliability

statistics. An example of a trade-off study is also provided.

7-1

i

7.1 PREDICTIONS OF FUTURE ERRORS

Once estimates of N, q (or * for the Poisson), and a are obtained from

the model for a given set of software tested over k occasions, predictions

of future errors can be derived. At the system level for the binomial.,

Poisson, or least squares model version, the prediction equations are:

nk+l = N k+ qk+l (7.1)

%+2 (Nk+l " k+l) qk 2

k+£- 1

n;+= Nkl a i qk+

i=k+l

Where:

Nk+1 (N - aNk is the estimated number of errors

remaining after k test occasions

N is the cumulative errors observed for the system
k
during the k test occasions

=k~ 1 - (1-q)tk+l

tk+

q k+ I -(1-q) k+1

7-2

~ K:

q (or *) is the probability of detecting an individual

error during a unit time interval. For the Poisson, the

equations qk+' q k+2"" would be replaced by *k+l,

* k 2 " " ' I e t c .,

(N - an;.,)

kkl +1l(+ - .I)

are the estimates of the number of remaining errors in

the system on each of the future occasions;

tk+l, tk+2 .t are estimates, specified by the user

of future testing effort to be applied to the system; and

n nk+2,...n are the expected values of software

errors detected during future occasions.

At the module level the equations are the same, if N, q (or 4), and a

have been estimated for each module. If N, q (or #), and a have been

estimated for the system using the lower level module data, then the

weighting factor (w.) for each module must be considered. The form of

the prediction equation for occasion k+l now becomes:

nkl = Nk+l,j qk+l,j (7.2)

7-3

Where,

N klj= (w. N -t ak~j)
k+1,3

t
qk+,j =1 - (1-q) k+l,j

Similar substitutions for a'+.. Nk+.. and qare made for

* the remaining future occasions.

A __________7-4

kift

7.2 CURRENT AND FUTURE RELIABILITY ESTIMATES

Consider that at the end of k testing occasions we wish to evaluate the

reliability of the software system that is under test. Using our defini-

tion of reliability, let tk+1 be the time interval for the next test

occasion during which the system will be evaluated against the requirement

that no more than a specified number (M) of software errors will occur.

If no errors are allowed, i.e., M=O, then the reliability estimate (R')

for the system using the binomial solutions for N, q, and a is:

p(MiO) = R = k k+ (1-qk+) k+1 (7.3)

Further simplfication of (7.3) results in:

R' = (I-q) k+l k+1 (7.4)

If no more than a specified number (M) of errors (x) are allowed during

the requrements test, then the reliability estimate becomes:

M M)=R M(x) (N k+l-x) (7.5)p~xH)ff R ° ff k+1 k+1 -(-qk+l)

When the solutions for N, *, and a are obtained using the Poisson model,

corresponding equations for R' can be derived and are given as follows:

Where M=O:

P(M=O) = R"
k + l ~k+ l (7.6)

7-5

V

When no more than a specified number (H) of errors (x) are allowed:

H
"Nk+l(k+l

p(x<M) = R' e (N k+l~k+l)x (7.7)

x0!x=O

At the module level, if N, # and a have been estimated for each module,

the equations do not change. If N, #, and a are estimated for the

system using the lower level module data, then substitutions for Nk 1,

#k+1' and tk+1 are needed, as follows, to apply to the individual module (j):

Sk+l, j = (w j N - ON k,j)

*k+l,j = - k+l j , and

tk+l,j is substituted for tk+1

For future reliability estimates, consider that a requirement has been

established which specifies that during some future testing occasion

(denoted here as t k+2) the probability that no more than a specified

number (H) of errors will occur is R. The project manager, in this case,
needs to determine how much additional testing effort (t k+1) is needed,

prior to the actual beginning of the future test interval (tk+2), to get

the system up the specified reliability level (R).

7-6

At the system level, then, assume that nk+1 software errors will be

detected during the interval tk+1. From (7.4) for the binomial

model, the specified reliability on occasion (k+2) is given by:

t k+2 (N k+1 - nk+ I)

Rk+2 = (l-q)

which reduces to:

t k+2(k+l)(-q)tk~l

Rk+2 = (l-q) (7.8)

when (7.1) is substituted for n

Solving now for tk+1, we have:

tk+1 £nf An Rk+2 J (7.9)

t k+2 Nk+1 n(l-q)

In(l-q)

After this interval (tk+l) of future testing, the probability that the

number of errors occurring during a specified interval (tk+2) beyond

tk+1 is less than or equal to a given amount (M) is:

Rk+2 = p(x(I) =
M -

t (N -an' -x)
k(2 an k (I-q) k+l k+I (7.10)

x= 0
x

7-7

where:

q k 2 I - (I-q)t k+ 2

For the Poisson system level model, the corresponding equations to (7.8)

through (7.10) are:

Rk+2 = e(Nk+l " an #kl) 2 (7.11)

where:

n'l = Nk1 (1 (1-*) k+1)

Solving (7.11) for tk+1 gives:

t k+1 - [n (k1 + A'k+2 1(7.12)
k+2 / k+U1

and for the Poisson, the probability of passing a reliability requirements

test is:

Rk+2 = p(x<H)

Me Nkl a n;+) * [k+1 - an' k+ (7.13)

Applying (7.8) through (7.13) at the module level, assuming N, q (or 4)
and a have been estimated for the system using the lower level module
data, requires similar substitutions for the terms Nk+1, qk+l qk 2'

*k+l' *k+2' tk+1 and tk+2, as indicated earlier, including the substitution

tk+2,j for tk+2 .

7-8

I _ - _ _ _ __.l I'-- ' I 'J

It is important to note here that all the equations in this section are

properly formulated under the assumption that (a-1) over the future test

occasions. A more general formulation of these equations is needed,

given the work described in Section 3.4, concerned with determining the

time to achieve a specified number of errors remaining under imperfect

conditions (i.e., a<1) of error correction.

7-9

fr

7.3 EXAMPLE MODEL APPLICATION TO TRADE-OFFS

Consider that the following reliability requirements* have been specified 3

for a software system composed of three subsystems (A, B, and C). The

system is to be demonstrated during a reliability demonstration test.

9 During a 48-hour continuous reliability test, the

number of critical errors allowed for each subsystem

are:

Subsystem A - a maximum of 1

Subsystem B - a maximum of 3

Subsystem C - a maximum of 13

Consider also that if the developer can met these requirements, the

customer will award the following dollar amounts by subsystem:

Subsystem Award Amount

A 100K
B 50K
C 25K

Addressing the problem directly, the developer needs to answer the

question, "When we go into the 48-hour test, at what level of performance

do the subsystems have to be operating in order to be reasonably certain

of passing the test?"

*Similar requirements could have been specified for one system, where
the errors allowed were classified into three different categories of
errors, classified by type, severity, criticality, etc.

7-10 _

In order to answer the question, the developer needs to test each of the

subsystems during some time interval preceding the reliability test,

such that the conditions of the 48-hour test are duplicated over repeated

occasions during this interval. Of course, software errors of the type

(in this example only critical errors are examined) that will be evaluated

during the requirement test need to be collected during the occasions

preceding the actual test. Test effort data is also collected during

this test interval and the error rates are calculated for each subsystem.

Using a basic table of probabilities for the Poisson distribution function,

it is found that to be reasonably certain (e.g., 90 percent probability

level) of meeting the requirements, the performance level (i.e., error

rate) of each subsystem should be:

Subsystem Errors/48-Hours

A 0.5
B 1.8
C 9.5

Consider that the predicted error rates during the 48-hour test, obtained

using the model, are 1.6 for Subsystem A, 3.6 for Subsystem B, and 12

for Subsystem C. By using these numbers as means of a Poisson distribution,

the probability of passing the requirements test can be determined from

a table of the Poisson distribution. The error rates and their corres-

ponding probabilities are summarized below.

Predicted Corresponding
Subsystem Error Rate Probability

A 1.6 .53
B 3.6 .52
C 12.0 .68

7-11

!4

With no further testing prior to the 48-hour test, the expected award

amount or payoff is:

Expected amount = .53 (lOOK) + .52 (50K) + .68 (25K)

= 96K

The 96K should be compared with 175K which is the total award amount

given that the requirements as stated are met.

The developer may now desire or attempt to improve the performance level

of his system in such a way as to maximize his expected payoff from the

customer, using the time remaining prior to the requirement test.

Consider now that the developer sets out to reduce the error rates of

each subsystem by 50 percent, and that this can be accomplished assuming

a fixed testing effort (E1). The improved performance levels and proba-

bilities that would result for each subsystem are as follows:

New Performance New Probability of
Subsystem Level Passing Test

A 0.8 .81
B 1.6 .89
C 6.0 .99

For ie developer, the expected payoff that would result from expending

the effort (E1) on one subsystem versus another would be:

Strategy* New Expected Payoff

1: Expend E1 on A .81 (100K) + .52 (50K) + .68 (254) = 124K
2: Expend E1 on B .53 (100K) + .89 (50K) + .68 (25K) = 114.5K
3: Expend E1 on C .53 (100K) + .52 (50K) + .99 (25K) = 103.8K

*More complex strategies could also apply here.

7
7-12

The benefit and cost of each strategy then would be as follows assuming

that the cost of E1 is, for example, 20K:

Strategy Benefit Cost

I 124K - 96K = 28K) LESS = 8K
2 114.5K - 96K = 18.5K COST OF = -1.5K

3 103.8K - 96K = 7.8K E = -12.2K

Thus, given the developer's objectives (reduce error rates by 50 percent)

and available resources (a fixed effort El), strategy 1 should be chosen.

For strategy 2 and 3, the cost of improvement (E1) exceeds the payoff.

Under these conditions, the best strategy for subsystems B and C may

simply be not to expend any further effort toward improving their perfor-

mance levels.

7

~7-13

SECTION 8

DEFINITION OF TERMS

This section provides definitions for terms used throughout this report

within the context of software reliability predictions. Related terms,

not necessarily used in the report, are also provided. Synonyms and/or

quantitative definitions are included as appropriate. Where multiple

definitions exist only the one(s) relevant to this report are given.

The IBM Data Processing Glossary (111, and Joel D. Aron's text, The

Program Development Process [1, served as supplementary sources for the

definitions.[Availability - The degree to which a system or resource

is ready when needed to process data.

* Debugging - The process of detection, location, and

removal of errors.

* Error - A condition that could produce a discrepancy

between data processing results and true, or theoretically

correct (from the user's point of view), results.

e Error Detection Probability (q or *) - The probability

of any one error being detected within a unit time

interval. The reliability models presently developed

assume that this error detection probability, q (or *),
is constant from one testing occasion to another, and

is independent of the number of other errors detectcd

on previous occasions.

8-1

* Error Rate - The number of errors which occur during a

unit time interval. It may refer to either observed

values, estimated values, or predicted values.

e Failure - A symptom or manifestation of an error. See

also software problem reports.

* Nodule - A program unit that is discrete and dentifi-

able with respect to compiling, combining with other

units, and loading. For example, a module may be

input to or output from an asssembler, compiler,

linkage editor, or executive routine. A module is the

smallest (lowest level) element of software for which

error data can be recorded. See Figure 8-1.

o Operating System - Software which controls the execution

of computer programs and which may provide scheduling,

debugging, input/output control, accounting, compilation,

storage assignment, data management, and related

services.

9 Program - A sequence of instructions or steps that

completely describes a procedure in order to achieve a

specified result. In the context of this report

computer program is implied; hence a program that can

be executed on a computer to process data. See Figure 8-1.

* Project - An activity structured and organized to

accomplish a specified task within financial and time

constraints. A programming project has as its objective

8-2

! ' Oh I

8-3

I9

the production of a program system. Frequently, a

programming project is a subset of a larger systems

project, where the systems project may include, in

addition to the programming project, a hardware project,

systems operations, integration and test, etc. Synonym:

Program (commonly within the Federal government.)

e Software - In the broad sense, a set of programs (or

program system(s)), procedures, and documentation. In

the context of a software error, the reference is more

strictly attributed to a set of programs and their

associated errors.

e Subsystem - A logical part of a system that is itself

a system, and is usually capable of operating independently

of and/or asynchronously with its controlling system

and other subsystems. See Figure 8-1.

o System - A collection of elements which are organized

such that they satisfy a set of functional and perfor-

mance specifications. In the context of this report,

a system refers to a collection of computer programs.

See Figure 8-1.

o Software Error - Any one of a number of errors that

can be classified as being caused by or attributed to

the activity of computer programing, and that can be

corrected by a change to the software itself.

8-4

• _,_ _ _

Software Problem Reports (SPRs) - Reports written

usually during formal system test which describe error

conditions or system failures purported to be attributable

to the software. In the context of this report SPRs

are considered symptoms of latent errors in the software.

Software Reliability - The probability that no (or no

more than a specified number of) software errors of a

given type will occur during a specified future time

interval under specified testing conditions.

Software System - A collection of modules which are

computer programs and thpir related documentation.

Typically, a software system includes an operating

system and an applications system where the operating

system provides certain support functions and the

application system satisfies specific user data process-

ing requirements.

Test Occasion - An event of error data collection;

each occasion should have a time interval associated

with it, otherwise, the implication to the model is

that all test occasions are of equal length of time.

If the event is a computer run, then the CPU time

should be used; if the event is a manual debugging,

the elapsed time should be used. One additional

important assumption made here is that one occasion be

comparable to every other occasion in terms of the

time spent (testing effort) in detecting errors. It

8-5

is not required that the amount of time between testing

occasions be equal. However, there should be no

variation in the method of detection.

*Unit -See definition of module.

8-6

SECTION 9

REFERENCES

(1] Aron, J. D.
The Program Development Process, The Individual Programmer.
Reading, MA: Addison-Wesley Pub. Co. Inc., 1974.

(21 Baker, W. F.
Software Data Collection and Analysis, RADC-TR-77-192,
Technical Report
Rome Air Development Center, Air Force Systems Command
Griffiss Air Force Base, New York, June 1977. (A041644)

[3] Brooks, W. D., Weiler, P. W.
Software Reliability Analysis, Technical Report, PCI 6G39.
Gaithersburg, MD: IBM Corporation, FSD, December 1976.

[41 Brooks, W. D., Weiler, P. W.
Software Reliability Analysis, IBM Technical Report, FSD 77-0009.
Gaithersburg, MD: IBM Corporation, FSD, February 1977.

[5] Brooks, W. D., Kocher, D. F., 1itley, R. W., Weiler, P. W.
Software Reliability Analysis, Technical Report, PCI 7G39.
Gaithersburg, MD: IBM Corporation, FSD, December 1977.

[6] Dodes, I. A.
Numerical Analysis for Computer Science.
New York, NY: Elsevier North-Holland, Inc., 1978.

[71 Fries, M. J.
Software Error Data Acquisition, RADC-TR-77-130, Final Technical
Report, Boeing Aerospace Co., April 1977, (A039916)

[81 Goel, A. L., Okumoto, K.
Software Failure Analysis by Non-Homogeneous Poisson Process,
Syracuse, NY: Syracuse University (Unpublished paper).

9 a Goel, A. L.
A Software Error Detection Model with Applications.
Syracuse, MY: Syracuse University, 1979 (Unpublished paper).

4 9-1
if .&

4

[101 Hildebrand, F. B.
Introduction to Numerical Analysis. New York, NY:
McGraw-Hill Book Company, 1956.

111 IBM Corporation.
Data Processing Glossary, Publication No. GC20-1699.
White Plains, NY: IBM Corporation,. 1977.

[121 Jelinski Z. and Horanda, P. B.
"Applications of a Probability-Based Model to a Code Reading Experiment,"
Proceedings, IEEE Symposium on Computer Software Reliability, April
30 through May 2, 1973, p. 78.

[131 Motley, R. W.
Software Reliability Analysis, Technical Report, PCI 8G39.
Gaithersburg, MD: IBM Corporation, FSD, September 1978.

1141 Motley, R. W. and Brooks, W. D.
Statistical Prediction of Programming Errors, RADC-TR-77-175,
IBM Corp., Final Technical Report, Hay 1977. (A041106)

1151 Motley, R. W., Brooks, W. D.
Software Reliability Model: Usability and Acceptability
in the Project Environment. Technical Report, OHE Project.
Gaithersburg, MD: IBM Corporation, FSD, December 1979.

[161 Shaefer, R. E. et al.
Validation of Software Reliability Models, RADC-TR-79-147,
Final Technical Report, Hughes Aircraft Co., June 1979. (A072113)

[171 Shooman M. L.
"Operational Testing and Software Reliability Estimation During
Program Development, " Record, 1973 IEEE Symposium
on Computer Software Reliability, April 30 through May 2, 1973,
IEEE Catalog No. 73, CH0741-9CSR, pp. 51-57.

[18] Sukert, Captain Alan N.
A Software Reliability Modeling Study, RADC-TR-76-247,
In-house Report,
Rome Air Development Center, Air Force Systems Command,
Griffiss Air Force Base, New York, August 1976. (A030437)

9-2

[19) Thayer, T. A., et al.
Software Reliability Study, RADC-TR-76-238, Final Technical Report,
TRW Systems Group, August 1976. (A030798)

[201 Willman, H. E., et al.
Software Systems Reliability:__A Raytheon Project History,
RADC-TR-77-188, Final Technical Report, Raytheon Co., June 1977.
(A040992)

9-3

Magi

Ro eAir Development Center
tam P&Mn And tea" 4e4*aA4i dvgtCOpme, tfAt Ald,

~e~s~tadaeqd4Wn /wg~um6 n app. 1tt 06 CouuAad Co*ttot
COMWI&a*4Om and intovoW4nL (call ftuviwu. teew4
and eng4ineetiqin 4&apot oaUxn Aa6 04 tecaM4O O4Omte'

ipkwuUed to ESV P09446a Of~iteA (POd3) and QOA EsI)
etemve. The cV"4mL*9wta tige MW-w zLat

couw~ia~toM, CettoImgR~tli ...d~IW and OK&WIALP 6uk-
veUtanee od g'wand and aqi Ao4pace objeptA,,.~ ne~dat
eetion and kancLtng, UL~'enio JyJtta ifh~~o
iouAkidi papgO , ao~ 4t~afutftO Ai.~v

